Normal view MARC view ISBD view

Dalla geometria di Euclide alla geometria dell’Universo [electronic resource] : Geometria su sfera, cilindro, cono, pseudosfera / by Ferdinando Arzarello, Cristiano Dané, Laura Lovera, Miranda Mosca, Nicoletta Nolli, Antonella Ronco.

By: Arzarello, Ferdinando [author.].
Contributor(s): Dané, Cristiano [author.] | Lovera, Laura [author.] | Mosca, Miranda [author.] | Nolli, Nicoletta [author.] | Ronco, Antonella [author.] | SpringerLink (Online service).
Material type: materialTypeLabelBookSeries: Convergenze: Publisher: Milano : Springer Milan : Imprint: Springer, 2012Description: XI, 198 pagg. online resource.Content type: text Media type: computer Carrier type: online resourceISBN: 9788847025745.Subject(s): Mathematics | Geometry | Mathematics | GeometryDDC classification: 516 Online resources: Click here to access online In: Springer eBooksSummary: Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono deprivato del vertice), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aereoporti); si indaga sulla curvatura del nostro universo; si descrivono le leggi geometriche su cui si basa la tecnologia dei GPS. Non si trascurano gli aspetti fondazionali, analizzando quali assiomi della Geometria Euclidea valgano o meno e perché nelle nuove geometrie.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Il testo confronta con la usuale geometria del piano (euclidea) vari tipi di geometrie che si hanno su superfici note e meno note: geometria sulla sfera, sul cilindro, sul cono e sulla pseudosfera. L'idea di fondo è di giungere alla descrizione "intrinseca" di queste geometrie analizzando che cosa significa l'andare diritto su queste superficie (cioè l'idea di geodetica). Si giunge così a vari tipi di geometrie che si discostano da quella euclidea usuale: geometrie localmente euclidee (su cilindro e cono deprivato del vertice), geometria ellittica (sulla sfera), geometria iperbolica (sulla pseudosfera). Si scopre che la chiave di volta concettuale che distingue queste diverse geometrie è la nozione di curvatura gaussiana, rispettivamente nulla su piani, cilindri, coni; (costante) positiva sulla sfera e (costante) negativa sulla pseudosfera. In relazione a queste idee matematiche si sviluppano anche vari temi interdisciplinari: si studiano ad esempio le caratteristiche delle carte geografiche che rappresentano la Terra a partire dal problema di determinare la rotta migliore tra due località (porti, aereoporti); si indaga sulla curvatura del nostro universo; si descrivono le leggi geometriche su cui si basa la tecnologia dei GPS. Non si trascurano gli aspetti fondazionali, analizzando quali assiomi della Geometria Euclidea valgano o meno e perché nelle nuove geometrie.

There are no comments for this item.

Log in to your account to post a comment.

2017 | The Technical University of Kenya Library | +254(020) 2219929, 3341639, 3343672 | library@tukenya.ac.ke | Haile Selassie Avenue