| 000 | 04027nam a22005175i 4500 | ||
|---|---|---|---|
| 001 | 978-94-007-5824-7 | ||
| 003 | DE-He213 | ||
| 005 | 20140220082939.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 130217s2013 ne | s |||| 0|eng d | ||
| 020 |
_a9789400758247 _9978-94-007-5824-7 |
||
| 024 | 7 |
_a10.1007/978-94-007-5824-7 _2doi |
|
| 050 | 4 | _aR-RZ | |
| 072 | 7 |
_aMBGR _2bicssc |
|
| 072 | 7 |
_aMED000000 _2bisacsh |
|
| 082 | 0 | 4 |
_a610 _223 |
| 100 | 1 |
_aCleophas, Ton J. _eauthor. |
|
| 245 | 1 | 0 |
_aMachine Learning in Medicine _h[electronic resource] / _cby Ton J. Cleophas, Aeilko H. Zwinderman. |
| 264 | 1 |
_aDordrecht : _bSpringer Netherlands : _bImprint: Springer, _c2013. |
|
| 300 |
_aXV, 265 p. 44 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aPreface -- 1 Introduction to machine learning -- 2 Logistic regression for health profiling -- 3 Optimal scaling: discretization -- 4 Optimal scaling: regularization including ridge, lasso, and elastic net regression -- 5 Partial correlations -- 6 Mixed linear modelling -- 7 Binary partitioning -- 8 Item response modelling -- 9 Time-dependent predictor modelling -- 10 Seasonality assessments -- 11 Non-linear modelling -- 12 Artificial intelligence, multilayer Perceptron modelling -- 13 Artificial intelligence, radial basis function modelling -- 14 Factor analysis -- 15 Hierarchical cluster analysis for unsupervised data -- 16 Partial least squares -- 17 Discriminant analysis for Supervised data -- 18 Canonical regression -- 19 Fuzzy modelling -- 20 Conclusions. Index. . | |
| 520 | _aMachine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods. | ||
| 650 | 0 | _aMedicine. | |
| 650 | 0 | _aComputer vision. | |
| 650 | 0 | _aEntomology. | |
| 650 | 0 | _aLiteracy. | |
| 650 | 0 | _aStatistics. | |
| 650 | 1 | 4 | _aBiomedicine. |
| 650 | 2 | 4 | _aBiomedicine general. |
| 650 | 2 | 4 | _aEntomology. |
| 650 | 2 | 4 | _aMedicine/Public Health, general. |
| 650 | 2 | 4 | _aStatistics, general. |
| 650 | 2 | 4 | _aComputer Imaging, Vision, Pattern Recognition and Graphics. |
| 650 | 2 | 4 | _aLiteracy. |
| 700 | 1 |
_aZwinderman, Aeilko H. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9789400758230 |
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-94-007-5824-7 |
| 912 | _aZDB-2-SBL | ||
| 999 |
_c99727 _d99727 |
||