000 03209nam a22004935i 4500
001 978-88-470-2445-8
003 DE-He213
005 20140220082929.0
007 cr nn 008mamaa
008 121116s2013 it | s |||| 0|eng d
020 _a9788847024458
_9978-88-470-2445-8
024 7 _a10.1007/978-88-470-2445-8
_2doi
050 4 _aQA1-939
072 7 _aPB
_2bicssc
072 7 _aMAT000000
_2bisacsh
082 0 4 _a510
_223
100 1 _aGentili, Graziano.
_eeditor.
245 1 0 _aAdvances in Hypercomplex Analysis
_h[electronic resource] /
_cedited by Graziano Gentili, Irene Sabadini, Michael Shapiro, Franciscus Sommen, Daniele C. Struppa.
264 1 _aMilano :
_bSpringer Milan :
_bImprint: Springer,
_c2013.
300 _aVII, 147 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer INdAM Series,
_x2281-518X ;
_v1
505 0 _aC. Bisi, C. Stoppato: Regular vs. classical Mobius transformations of the quaternionic unit ball -- F. Brackx, H. De Bie, Hennie De Schepper: Distributional Boundary Values of Harmonic Potentials in Euclidean Half-space as Fundamental Solutions of Convolution Operators in Clifford Analysis -- F. Colombo, J.O. Gonzalez-Cervantes, M.E. Luna-Elizarraras, I. Sabadini, M. Shapiro: On two approaches to the Bergman theory for slice regular functions -- C. Della Rocchetta, G. Gentili, G. Sarfatti: A Bloch- Landau Theorem for slice regular functions -- M. Ku, U. Kahler, P. Cerejeiras: Dirichlet-type problems for the iterated Dirac operator on the unit ball in Clifford analysis -- A. Perotti: Fueter regularity and slice regularity: meeting points for two function theories -- D.C. Struppa: A note on analytic functionals on the complex light cone -- M.B. Vajiac: The S-spectrum for some classes of matrices -- F. Vlacci: Regular Composition for SliceRegular Functions of Quaternionic Variable.
520 _aThe work aims at bringing together international leading specialists in the field of Quaternionic and Clifford Analysis, as well as young researchers interested in the subject, with the idea of presenting and discussing recent results, analyzing new trends and techniques in the area and, in general, of promoting scientific collaboration. Particular attention is paid to the presentation of different notions of regularity for functions of hypercomplex variables, and to the study of the main features of the theories that they originate.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 1 4 _aMathematics.
650 2 4 _aMathematics, general.
650 2 4 _aAnalysis.
700 1 _aSabadini, Irene.
_eeditor.
700 1 _aShapiro, Michael.
_eeditor.
700 1 _aSommen, Franciscus.
_eeditor.
700 1 _aStruppa, Daniele C.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9788847024441
830 0 _aSpringer INdAM Series,
_x2281-518X ;
_v1
856 4 0 _uhttp://dx.doi.org/10.1007/978-88-470-2445-8
912 _aZDB-2-SMA
999 _c99196
_d99196