000 02473nam a22004335i 4500
001 978-3-642-37956-7
003 DE-He213
005 20140220082910.0
007 cr nn 008mamaa
008 130806s2013 gw | s |||| 0|eng d
020 _a9783642379567
_9978-3-642-37956-7
024 7 _a10.1007/978-3-642-37956-7
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aShafarevich, Igor R.
_eauthor.
245 1 0 _aBasic Algebraic Geometry 1
_h[electronic resource] :
_bVarieties in Projective Space /
_cby Igor R. Shafarevich.
250 _a3rd ed. 2013.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXVIII, 310 p. 21 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreface -- Book 1. Varieties in Projective Space: Chapter 1. Basic Notions -- Chapter II. Local Properties -- Chapter III. Divisors and Differential Forms -- Chapter IV. Intersection Numbers -- Algebraic Appendix -- References -- Index.
520 _aShafarevich's Basic Algebraic Geometry has been a classic and universally used introduction  to the subject since its first appearance over 40 years ago. As the translator writes in a prefatory note, ``For all [advanced undergraduate and beginning graduate] students, and for the many specialists in other branches of math who need a liberal education in algebraic geometry, Shafarevich’s book is a must.'' The third edition, in addition to some minor corrections, now offers a new treatment of the Riemann--Roch theorem for curves, including a proof from first principles. Shafarevich's book is an attractive and accessible introduction to algebraic geometry, suitable for beginning students and nonspecialists, and the new edition is set to remain a popular introduction to the field.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aTheoretical, Mathematical and Computational Physics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642379550
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-37956-7
912 _aZDB-2-SMA
999 _c98169
_d98169