000 02576nam a22004335i 4500
001 978-3-642-36874-5
003 DE-He213
005 20140220082906.0
007 cr nn 008mamaa
008 130424s2013 gw | s |||| 0|eng d
020 _a9783642368745
_9978-3-642-36874-5
024 7 _a10.1007/978-3-642-36874-5
_2doi
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
082 0 4 _a515.353
_223
100 1 _aXu, Xiaoping.
_eauthor.
245 1 0 _aAlgebraic Approaches to Partial Differential Equations
_h[electronic resource] /
_cby Xiaoping Xu.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXXIV, 394 p. 2 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreface -- Introduction -- Ordinary Differential Equations -- Partial Differential Equations -- Bibliography -- Index.
520 _aThis book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation,  the KP equation,  the nonlinear Schrodinger equation,  the Davey and Stewartson equations, the Boussinesq equations in geophysics,  the Navier-Stokes equations and the boundary layer problems.  In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions,  symmetry transformations,  linearization techniques  and  special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research.
650 0 _aMathematics.
650 0 _aDifferential equations, partial.
650 1 4 _aMathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aMathematical Physics.
650 2 4 _aApplications of Mathematics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642368738
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-36874-5
912 _aZDB-2-SMA
999 _c97980
_d97980