000 04218nam a22005655i 4500
001 978-3-642-36068-8
003 DE-He213
005 20140220082902.0
007 cr nn 008mamaa
008 130424s2013 gw | s |||| 0|eng d
020 _a9783642360688
_9978-3-642-36068-8
024 7 _a10.1007/978-3-642-36068-8
_2doi
050 4 _aQA273.A1-274.9
050 4 _aQA274-274.9
072 7 _aPBT
_2bicssc
072 7 _aPBWL
_2bicssc
072 7 _aMAT029000
_2bisacsh
082 0 4 _a519.2
_223
100 1 _aEichelsbacher, Peter.
_eeditor.
245 1 0 _aLimit Theorems in Probability, Statistics and Number Theory
_h[electronic resource] :
_bIn Honor of Friedrich Götze /
_cedited by Peter Eichelsbacher, Guido Elsner, Holger Kösters, Matthias Löwe, Franz Merkl, Silke Rolles.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aVIII, 317 p. 2 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Proceedings in Mathematics & Statistics,
_x2194-1009 ;
_v42
505 0 _aW. van Zwet: A conversation with Friedrich Götze -- V. Bernik, V. Beresnevich, F. Götze, O. Kukso: Distribution of algebraic numbers and metric theory of Diophantine approximation -- J. Marklof: Fine-scale statistics for the multidimensional Farey sequence -- S. G. Bobkov, M. M. Madiman: On the problem of reversibility of the entropy power inequality -- G. P. Chistyakov: On probability measures with unbounded angular ratio -- M. Gordin: CLT for stationary normal Markov chains via generalized coboundaries -- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems -- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems -- R. Bhattacharya: A nonparametric theory of statistics on manifolds -- J. Lember, H. Matzinger, F. Torres: Proportion of gaps and uctuations of the optimal score in random sequence comparison -- Y. V. Prokhorov, V. V. Ulyanov: Some approximation problems in statistics and probability -- H. Döring, P. Eichelsbacher: Moderate deviations for the determinant of Wigner matrices -- O. Friesen, M. Löwe: The semicircle law for matrices with dependent entries -- A. Tikhomirov: Limit theorems for random matrices.
520 _aLimit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory. The book is the product of  a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Götze, a noted expert in this field.
650 0 _aMathematics.
650 0 _aFunctional analysis.
650 0 _aNumber theory.
650 0 _aDistribution (Probability theory).
650 1 4 _aMathematics.
650 2 4 _aProbability Theory and Stochastic Processes.
650 2 4 _aFunctional Analysis.
650 2 4 _aNumber Theory.
700 1 _aElsner, Guido.
_eeditor.
700 1 _aKösters, Holger.
_eeditor.
700 1 _aLöwe, Matthias.
_eeditor.
700 1 _aMerkl, Franz.
_eeditor.
700 1 _aRolles, Silke.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642360671
830 0 _aSpringer Proceedings in Mathematics & Statistics,
_x2194-1009 ;
_v42
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-36068-8
912 _aZDB-2-SMA
999 _c97781
_d97781