000 03345nam a22005775i 4500
001 978-3-642-34333-9
003 DE-He213
005 20140220082857.0
007 cr nn 008mamaa
008 130509s2013 gw | s |||| 0|eng d
020 _a9783642343339
_9978-3-642-34333-9
024 7 _a10.1007/978-3-642-34333-9
_2doi
050 4 _aQA276-280
072 7 _aPBT
_2bicssc
072 7 _aK
_2bicssc
072 7 _aBUS061000
_2bisacsh
082 0 4 _a330.015195
_223
100 1 _aFahrmeir, Ludwig.
_eauthor.
245 1 0 _aRegression
_h[electronic resource] :
_bModels, Methods and Applications /
_cby Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, Brian Marx.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXIV, 698 p. 204 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Regression Models -- The Classical Linear Model -- Extensions of the Classical Linear Model -- Generalized Linear Models -- Categorical Regression Models -- Mixed Models -- Nonparametric Regression -- Structured Additive Regression -- Quantile Regression -- A Matrix Algebra -- B Probability Calculus and Statistical Inference -- Bibliography -- Index.
520 _aThe aim of this book is an applied and unified introduction into parametric, non- and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through many real data examples and case studies. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. Thus, the book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written on an intermediate mathematical level and assumes only knowledge of basic probability, calculus, and statistics. The most important definitions and statements are concisely summarized in boxes. Two appendices describe required matrix algebra, as well as elements of probability calculus and statistical inference.
650 0 _aStatistics.
650 0 _aEpidemiology.
650 0 _aBioinformatics.
650 0 _aStatistical methods.
650 0 _aMathematical statistics.
650 0 _aEconomics
_xStatistics.
650 0 _aEconometrics.
650 1 4 _aStatistics.
650 2 4 _aStatistics for Business/Economics/Mathematical Finance/Insurance.
650 2 4 _aStatistical Theory and Methods.
650 2 4 _aEconometrics.
650 2 4 _aBiostatistics.
650 2 4 _aBioinformatics.
650 2 4 _aEpidemiology.
700 1 _aKneib, Thomas.
_eauthor.
700 1 _aLang, Stefan.
_eauthor.
700 1 _aMarx, Brian.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642343322
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-34333-9
912 _aZDB-2-SMA
999 _c97499
_d97499