000 02104nam a22004455i 4500
001 978-3-642-33657-7
003 DE-He213
005 20140220082855.0
007 cr nn 008mamaa
008 121026s2013 gw | s |||| 0|eng d
020 _a9783642336577
_9978-3-642-33657-7
024 7 _a10.1007/978-3-642-33657-7
_2doi
050 4 _aQA276-280
072 7 _aPBT
_2bicssc
072 7 _aMAT029000
_2bisacsh
082 0 4 _a519.5
_223
100 1 _aSeber, George A.F.
_eauthor.
245 1 0 _aAdaptive Sampling Designs
_h[electronic resource] :
_bInference for Sparse and Clustered Populations /
_cby George A.F. Seber, Mohammad M. Salehi.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aIX, 70 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Statistics,
_x2191-544X
505 0 _aBasic Ideas -- Adaptive Cluster Sampling -- Rao-Blackwell Modi -- Primary and Secondary Units -- Inverse Sampling Methods -- Adaptive Allocation.
520 _aThis book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations. Written by two acknowledged experts in the field of adaptive sampling.
650 0 _aStatistics.
650 1 4 _aStatistics.
650 2 4 _aStatistics, general.
650 2 4 _aStatistics for Life Sciences, Medicine, Health Sciences.
700 1 _aSalehi, Mohammad M.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642336560
830 0 _aSpringerBriefs in Statistics,
_x2191-544X
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-33657-7
912 _aZDB-2-SMA
999 _c97404
_d97404