000 02400nam a22005055i 4500
001 978-3-642-31712-5
003 DE-He213
005 20140220082851.0
007 cr nn 008mamaa
008 120914s2013 gw | s |||| 0|eng d
020 _a9783642317125
_9978-3-642-31712-5
024 7 _a10.1007/978-3-642-31712-5
_2doi
050 4 _aQA150-272
072 7 _aPBF
_2bicssc
072 7 _aMAT002000
_2bisacsh
082 0 4 _a512
_223
100 1 _aFontana, Marco.
_eauthor.
245 1 0 _aFactoring Ideals in Integral Domains
_h[electronic resource] /
_cby Marco Fontana, Evan Houston, Thomas Lucas.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aVIII, 164 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes of the Unione Matematica Italiana,
_x1862-9113 ;
_v14
520 _aThis volume provides a wide-ranging survey of, and many new results on, various important types of ideal factorization actively investigated by several authors in recent years.  Examples of domains studied include (1) those with weak factorization, in which each nonzero, nondivisorial ideal can be factored as the product of its divisorial closure and a product of maximal ideals and (2) those with pseudo-Dedekind factorization, in which each nonzero, noninvertible ideal can be factored as the product of an invertible ideal with a product of pairwise comaximal prime ideals.  Prüfer domains play a central role in our study, but many non-Prüfer examples are considered as well.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aGeometry, algebraic.
650 0 _aNumber theory.
650 1 4 _aMathematics.
650 2 4 _aAlgebra.
650 2 4 _aCommutative Rings and Algebras.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aNumber Theory.
700 1 _aHouston, Evan.
_eauthor.
700 1 _aLucas, Thomas.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642317118
830 0 _aLecture Notes of the Unione Matematica Italiana,
_x1862-9113 ;
_v14
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-31712-5
912 _aZDB-2-SMA
999 _c97146
_d97146