000 03399nam a22004935i 4500
001 978-3-642-14200-0
003 DE-He213
005 20140220082843.0
007 cr nn 008mamaa
008 120925s2013 gw | s |||| 0|eng d
020 _a9783642142000
_9978-3-642-14200-0
024 7 _a10.1007/978-3-642-14200-0
_2doi
050 4 _aHB135-147
072 7 _aKF
_2bicssc
072 7 _aMAT003000
_2bisacsh
072 7 _aBUS027000
_2bisacsh
082 0 4 _a519
_223
100 1 _aCvitanić, Jakša.
_eauthor.
245 1 0 _aContract Theory in Continuous-Time Models
_h[electronic resource] /
_cby Jakša Cvitanić, Jianfeng Zhang.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXII, 255 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Finance,
_x1616-0533
505 0 _aPreface -- PART I Introduction: 1.The Principal-Agent Problem -- 2.Single-Period Examples -- PART II First Best. Risk Sharing under Full Information: 3.Linear Models with Project Selection, and Preview of Results -- 4.The General Risk Sharing Problem -- PART III Second Best. Contracting Under Hidden Action- The Case of Moral Hazard: 5.The General Moral Hazard Problem -- 6.DeMarzo and Sannikov (2007), Biais et al (2007) – An Application to Capital Structure Problems: Optimal Financing of a Company -- PART IV Third Best. Contracting Under Hidden Action and Hidden Type – The Case of Moral Hazard and Adverse Selection: 7.Controlling the Drift -- 8.Controlling the Volatility-Drift Trade-Off with the First-Best -- PART IV Appendix: Backward SDEs and Forward-Backward SDEs -- 9.Introduction -- 10.Backward SDEs -- 11.Decoupled Forward Backward SDEs -- 12.Coupled Forward Backward SDEs -- References -- Index.
520 _aIn recent years there has been a significant increase of interest in continuous-time Principal-Agent models, or contract theory, and their applications. Continuous-time models provide a powerful and elegant framework for solving stochastic optimization problems of finding the optimal contracts between two parties, under various assumptions on the information they have access to, and the effect they have on the underlying "profit/loss" values. This monograph surveys recent results of the theory in a systematic way, using the approach of the so-called Stochastic Maximum Principle, in models driven by Brownian Motion. Optimal contracts are characterized via a system of Forward-Backward Stochastic Differential Equations. In a number of interesting special cases these can be solved explicitly, enabling derivation of many qualitative economic conclusions.
650 0 _aMathematics.
650 0 _aFinance.
650 0 _aSystems theory.
650 1 4 _aMathematics.
650 2 4 _aQuantitative Finance.
650 2 4 _aGame Theory, Economics, Social and Behav. Sciences.
650 2 4 _aSystems Theory, Control.
700 1 _aZhang, Jianfeng.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642141997
830 0 _aSpringer Finance,
_x1616-0533
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-14200-0
912 _aZDB-2-SMA
999 _c96734
_d96734