000 03220nam a22005295i 4500
001 978-3-319-00312-2
003 DE-He213
005 20140220082837.0
007 cr nn 008mamaa
008 130605s2013 gw | s |||| 0|eng d
020 _a9783319003122
_9978-3-319-00312-2
024 7 _a10.1007/978-3-319-00312-2
_2doi
050 4 _aQC350-467
050 4 _aTA1501-1820
050 4 _aQC392-449.5
050 4 _aTA1750-1750.22
072 7 _aTTB
_2bicssc
072 7 _aPHJ
_2bicssc
072 7 _aTEC030000
_2bisacsh
082 0 4 _a621.36
_223
100 1 _aGuldin, Stefan.
_eauthor.
245 1 0 _aInorganic Nanoarchitectures by Organic Self-Assembly
_h[electronic resource] /
_cby Stefan Guldin.
264 1 _aHeidelberg :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _aXVII, 165 p. 66 illus., 50 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
505 0 _aFrom the Contents: Self-Assembly of Soft Matter -- Optical aspects of thin films and interfaces -- Structure-function interplay in dye-sensitised solar cells -- Experimental and analytical techniques -- Block copolymer-induced structure control for inorganic nanomaterials -- Crystal growth in block copolymer-derived mesoporous TiO_2.
520 _aMacromolecular self-assembly - driven by weak, non-covalent, intermolecular forces - is a common principle of structure formation in natural and synthetic organic materials. The variability in material arrangement on the nanometre length scale makes this an ideal way of matching  the structure-function demands of photonic and optoelectronic devices. However, suitable soft matter systems typically lack the appropriate photoactivity, conductivity or chemically stability. This thesis explores the implementation of soft matter design principles for inorganic thin film nanoarchitectures. Sacrificial block copolymers and colloids are employed as structure-directing agents for the co-assembly of solution-based inorganic materials, such as TiO_2 and SiO_2.  Novel fabrication and characterization methods allow unprecedented control of material formation on the 10 – 500 nm length scale, allowing the design of material architectures with interesting photonic and optoelectronic properties.
650 0 _aPhysics.
650 0 _aOptical materials.
650 1 4 _aPhysics.
650 2 4 _aOptics, Optoelectronics, Plasmonics and Optical Devices.
650 2 4 _aSoft and Granular Matter, Complex Fluids and Microfluidics.
650 2 4 _aOptical and Electronic Materials.
650 2 4 _aSurface and Interface Science, Thin Films.
650 2 4 _aNanoscale Science and Technology.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319003115
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-00312-2
912 _aZDB-2-PHA
999 _c96392
_d96392