000 02892nam a22004815i 4500
001 978-1-4614-8526-1
003 DE-He213
005 20140220082832.0
007 cr nn 008mamaa
008 130924s2013 xxu| s |||| 0|eng d
020 _a9781461485261
_9978-1-4614-8526-1
024 7 _a10.1007/978-1-4614-8526-1
_2doi
050 4 _aQA403.5-404.5
072 7 _aPBKF
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515.2433
_223
100 1 _aD'Angelo, John P.
_eauthor.
245 1 0 _aHermitian Analysis
_h[electronic resource] :
_bFrom Fourier Series to Cauchy-Riemann Geometry /
_cby John P. D'Angelo.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Birkhäuser,
_c2013.
300 _aX, 203 p. 27 illus., 19 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aCornerstones,
_x2197-182X
505 0 _aPreface -- Introduction to Fourier series -- Hilbert spaces -- Fourier transform on R -- Geometric considerations -- Appendix -- References -- Index. .
520 _aHermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book: geometric considerations in several complex variables. The final chapter includes complex differential forms, geometric inequalities from one and several complex variables, finite unitary groups, proper mappings, and naturally leads to the Cauchy-Riemann geometry of the unit sphere. The book thus takes the reader from the unit circle to the unit sphere. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. It will also be useful for students in physics and engineering, as it includes topics in harmonic analysis arising in these subjects. The inclusion of an appendix and more than 270 exercises makes this book suitable for a capstone undergraduate Honors class.
650 0 _aMathematics.
650 0 _aFourier analysis.
650 0 _aDifferential Equations.
650 0 _aGlobal differential geometry.
650 1 4 _aMathematics.
650 2 4 _aFourier Analysis.
650 2 4 _aDifferential Geometry.
650 2 4 _aOrdinary Differential Equations.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461485254
830 0 _aCornerstones,
_x2197-182X
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-8526-1
912 _aZDB-2-SMA
999 _c96065
_d96065