000 02230nam a22004695i 4500
001 978-1-4614-7934-5
003 DE-He213
005 20140220082830.0
007 cr nn 008mamaa
008 130809s2013 xxu| s |||| 0|eng d
020 _a9781461479345
_9978-1-4614-7934-5
024 7 _a10.1007/978-1-4614-7934-5
_2doi
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
082 0 4 _a515.353
_223
100 1 _aWang, Feng-Yu.
_eauthor.
245 1 0 _aHarnack Inequalities for Stochastic Partial Differential Equations
_h[electronic resource] /
_cby Feng-Yu Wang.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aX, 125 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Mathematics,
_x2191-8198
520 _aIn this book the author presents a self-contained account of Harnack inequalities and applications for the semigroup of solutions to stochastic partial and delayed differential equations. Since the semigroup refers to Fokker-Planck equations on infinite-dimensional spaces, the Harnack inequalities the author investigates are dimension-free. This is an essentially different point from the above mentioned classical Harnack inequalities. Moreover, the main tool in the study is a new coupling method (called coupling by change of measures) rather than the usual maximum principle in the current literature.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aDifferential equations, partial.
650 0 _aDistribution (Probability theory).
650 1 4 _aMathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aProbability Theory and Stochastic Processes.
650 2 4 _aAnalysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461479338
830 0 _aSpringerBriefs in Mathematics,
_x2191-8198
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-7934-5
912 _aZDB-2-SMA
999 _c96006
_d96006