000 02592nam a22005175i 4500
001 978-1-4614-7300-8
003 DE-He213
005 20140220082828.0
007 cr nn 008mamaa
008 130620s2013 xxu| s |||| 0|eng d
020 _a9781461473008
_9978-1-4614-7300-8
024 7 _a10.1007/978-1-4614-7300-8
_2doi
050 4 _aQA76.9.A43
072 7 _aPBKS
_2bicssc
072 7 _aCOM051300
_2bisacsh
082 0 4 _a518.1
_223
100 1 _aLuoto, Kurt.
_eauthor.
245 1 3 _aAn Introduction to Quasisymmetric Schur Functions
_h[electronic resource] :
_bHopf Algebras, Quasisymmetric Functions, and Young Composition Tableaux /
_cby Kurt Luoto, Stefan Mykytiuk, Stephanie van Willigenburg.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aXIV, 89 p. 75 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Mathematics,
_x2191-8198
505 0 _a1. Introduction -- 2. Classical combinatorial concepts -- 3. Hopf algebras -- 4. Compsition tableaux and further combinatorial concepts -- 5. Quasisymmetric Schur functions -- References -- Index.
520 _aAn Introduction to Quasisymmetric Schur Functions is aimed at researchers and graduate students in algebraic combinatorics. The goal of this monograph is twofold. The first goal is to provide a reference text for the basic theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions.
650 0 _aMathematics.
650 0 _aTopological Groups.
650 0 _aAlgorithms.
650 0 _aCombinatorics.
650 1 4 _aMathematics.
650 2 4 _aAlgorithms.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aApplications of Mathematics.
650 2 4 _aCombinatorics.
700 1 _aMykytiuk, Stefan.
_eauthor.
700 1 _avan Willigenburg, Stephanie.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461472995
830 0 _aSpringerBriefs in Mathematics,
_x2191-8198
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-7300-8
912 _aZDB-2-SMA
999 _c95894
_d95894