| 000 | 03447nam a22005055i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4614-6660-4 | ||
| 003 | DE-He213 | ||
| 005 | 20140220082825.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 130417s2013 xxu| s |||| 0|eng d | ||
| 020 |
_a9781461466604 _9978-1-4614-6660-4 |
||
| 024 | 7 |
_a10.1007/978-1-4614-6660-4 _2doi |
|
| 050 | 4 | _aQA299.6-433 | |
| 072 | 7 |
_aPBK _2bicssc |
|
| 072 | 7 |
_aMAT034000 _2bisacsh |
|
| 082 | 0 | 4 |
_a515 _223 |
| 100 | 1 |
_aDai, Feng. _eauthor. |
|
| 245 | 1 | 0 |
_aApproximation Theory and Harmonic Analysis on Spheres and Balls _h[electronic resource] / _cby Feng Dai, Yuan Xu. |
| 264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
| 300 |
_aXVIII, 440 p. 1 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
| 505 | 0 | _a1 Spherical Harmonics -- 2 Convolution and Spherical Harmonic Expansion -- 3 Littlewood-Paley Theory and Multiplier Theorem -- 4 Approximation on the Sphere -- 5 Weighted Polynomial Inequalities -- 6 Cubature Formulas on Spheres -- 7 Harmonic Analysis Associated to Reflection Groups -- 8 Boundedness of Projection Operator and Cesàro Means -- 9 Projection Operators and Cesàro Means in L^p Spaces -- 10 Weighted Best Approximation by Polynomials -- 11 Harmonic Analysis on the Unit Ball -- 12 Polynomial Approximation on the Unit Ball -- 13 Harmonic Analysis on the Simplex -- 14 Applications -- A Distance, Difference and Integral Formulas -- B Jacobi and Related Orthogonal Polynomials -- References -- Index -- Symbol Index. | |
| 520 | _aThis monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aGlobal analysis (Mathematics). | |
| 650 | 0 | _aFourier analysis. | |
| 650 | 0 | _aFunctions, special. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aAnalysis. |
| 650 | 2 | 4 | _aApproximations and Expansions. |
| 650 | 2 | 4 | _aFourier Analysis. |
| 650 | 2 | 4 | _aSpecial Functions. |
| 700 | 1 |
_aXu, Yuan. _eauthor. |
|
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781461466598 |
| 830 | 0 |
_aSpringer Monographs in Mathematics, _x1439-7382 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4614-6660-4 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c95721 _d95721 |
||