000 02746nam a22004935i 4500
001 978-1-4614-5888-3
003 DE-He213
005 20140220082822.0
007 cr nn 008mamaa
008 130107s2013 xxu| s |||| 0|eng d
020 _a9781461458883
_9978-1-4614-5888-3
024 7 _a10.1007/978-1-4614-5888-3
_2doi
050 4 _aQA241-247.5
072 7 _aPBH
_2bicssc
072 7 _aMAT022000
_2bisacsh
082 0 4 _a512.7
_223
100 1 _aFlicker, Yuval Z.
_eauthor.
245 1 0 _aDrinfeld Moduli Schemes and Automorphic Forms
_h[electronic resource] :
_bThe Theory of Elliptic Modules with Applications /
_cby Yuval Z. Flicker.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aV, 150 p. 5 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Mathematics,
_x2191-8198
505 0 _aElliptic Moduli -- Hecke Correspondences -- Trace Formulae -- Higher Recipropcity Laws. .
520 _aDrinfeld Moduli Schemes and Automorphic Forms: The Theory of Elliptic Modules with Applications is based on the author’s original work establishing the correspondence between ell-adic rank r Galois representations and automorphic representations of GL(r) over a function field, in the local case, and, in the global case, under a restriction at a single place. It develops Drinfeld’s theory of elliptic modules, their moduli schemes and covering schemes, the simple trace formula, the fixed point formula, as well as the congruence relations and a "simple" converse theorem, not yet published anywhere. This version, based on a recent course taught by the author at The Ohio State University, is updated with references to research that has extended and developed the original work. The use of the theory of elliptic modules in the present work makes it accessible to graduate students, and it will serve as a valuable resource to facilitate an entrance to this fascinating area of mathematics.
650 0 _aMathematics.
650 0 _aAlgebra.
650 0 _aTopological Groups.
650 0 _aNumber theory.
650 1 4 _aMathematics.
650 2 4 _aNumber Theory.
650 2 4 _aTopological Groups, Lie Groups.
650 2 4 _aCategory Theory, Homological Algebra.
650 2 4 _aAlgebra.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461458876
830 0 _aSpringerBriefs in Mathematics,
_x2191-8198
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-5888-3
912 _aZDB-2-SMA
999 _c95528
_d95528