000 02985nam a22005175i 4500
001 978-1-4614-4897-6
003 DE-He213
005 20140220082817.0
007 cr nn 008mamaa
008 121116s2013 xxu| s |||| 0|eng d
020 _a9781461448976
_9978-1-4614-4897-6
024 7 _a10.1007/978-1-4614-4897-6
_2doi
050 4 _aQA639.5-640.7
050 4 _aQA640.7-640.77
072 7 _aPBMW
_2bicssc
072 7 _aPBD
_2bicssc
072 7 _aMAT012020
_2bisacsh
072 7 _aMAT008000
_2bisacsh
082 0 4 _a516.1
_223
100 1 _aSánchez, Miguel.
_eeditor.
245 1 0 _aRecent Trends in Lorentzian Geometry
_h[electronic resource] /
_cedited by Miguel Sánchez, MIguel Ortega, Alfonso Romero.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aXII, 353 p. 26 illus., 12 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Proceedings in Mathematics & Statistics,
_x2194-1009 ;
_v26
520 _aTraditionally, Lorentzian geometry has been used as a necessary tool to understand general relativity, as well as to explore new genuine geometric behaviors, far from classical Riemannian techniques. Recent progress has attracted a renewed interest in this theory for many researchers: long-standing global open problems have been solved, outstanding Lorentzian spaces and groups have been classified, new applications to mathematical relativity and high energy physics have been found, and further connections with other geometries have been developed.   Samples of these fresh trends are presented in this volume, based on contributions from the VI International Meeting on Lorentzian Geometry, held at the University of Granada, Spain, in September, 2011. Topics such as geodesics, maximal, trapped and constant mean curvature submanifolds, classifications of manifolds with relevant symmetries, relations between Lorentzian and Finslerian geometries, and applications to mathematical physics are included.     This book will be suitable for a broad audience of differential geometers, mathematical physicists and relativists, and researchers in the field.
650 0 _aMathematics.
650 0 _aDiscrete groups.
650 0 _aGlobal differential geometry.
650 1 4 _aMathematics.
650 2 4 _aConvex and Discrete Geometry.
650 2 4 _aHyperbolic Geometry.
650 2 4 _aDifferential Geometry.
700 1 _aOrtega, MIguel.
_eeditor.
700 1 _aRomero, Alfonso.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461448969
830 0 _aSpringer Proceedings in Mathematics & Statistics,
_x2194-1009 ;
_v26
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-4897-6
912 _aZDB-2-SMA
999 _c95253
_d95253