| 000 | 03556nam a22004215i 4500 | ||
|---|---|---|---|
| 001 | 978-1-4614-3631-7 | ||
| 003 | DE-He213 | ||
| 005 | 20140220082812.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 120919s2013 xxu| s |||| 0|eng d | ||
| 020 |
_a9781461436317 _9978-1-4614-3631-7 |
||
| 024 | 7 |
_a10.1007/978-1-4614-3631-7 _2doi |
|
| 050 | 4 | _aQA1-939 | |
| 072 | 7 |
_aPB _2bicssc |
|
| 072 | 7 |
_aMAT000000 _2bisacsh |
|
| 082 | 0 | 4 |
_a510 _223 |
| 100 | 1 |
_aCunningham, Daniel W. _eauthor. |
|
| 245 | 1 | 2 |
_aA Logical Introduction to Proof _h[electronic resource] / _cby Daniel W. Cunningham. |
| 264 | 1 |
_aNew York, NY : _bSpringer New York : _bImprint: Springer, _c2013. |
|
| 300 |
_aXV, 356 p. 145 illus. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 505 | 0 | _aPreface -- The Greek Alphabet -- 1. Propositional Logic -- 2. Predicate Logic -- 3. Proof Strategies and Diagrams -- 4. Mathematical Induction -- 5. Set Theory -- 6. Functions -- 7. Relations -- 8. Core Concepts in Abstract Algebra -- 9. Core Concepts in Real Analysis -- A Summary of Strategies -- References -- List of Symbols. Index. | |
| 520 | _aA Logical Introduction to Proof is a unique textbook that uses a logic-first approach to train and guide undergraduates through a transition or “bridge” course between calculus and advanced mathematics courses. The author’s approach prepares the student for the rigors required in future mathematics courses and is appropriate for majors in mathematics, computer science, engineering, as well as other applied mathematical sciences. It may also be beneficial as a supplement for students at the graduate level who need guidance or reference for writing proofs. Core topics covered are logic, sets, relations, functions, and induction, where logic is the instrument for analyzing the structure of mathematical assertions and is a tool for composing mathematical proofs. Exercises are given at the end of each section within a chapter. Chapter 1 focuses on propositional logic while Chapter 2 is devoted to the logic of quantifiers. Chapter 3 methodically presents the key strategies that are used in mathematical proofs; each presented as a proof diagram. Every proof strategy is carefully illustrated by a variety of mathematical theorems concerning the natural, rational, and real numbers. Chapter 4 focuses on mathematical induction and concludes with a proof of the fundamental theorem of arithmetic. Chapters 5 through 7 introduce students to the essential concepts that appear in all branches of mathematics. Chapter 8 introduces the basic structures of abstract algebra: groups, rings, quotient groups, and quotient rings. Finally, Chapter 9 presents proof strategies that explicitly show students how to deal with the fundamental definitions that they will encounter in real analysis, followed by numerous examples of proofs that use these strategies. The appendix provides a useful summary of strategies for dealing with proofs. | ||
| 650 | 0 | _aMathematics. | |
| 650 | 0 | _aLogic, Symbolic and mathematical. | |
| 650 | 1 | 4 | _aMathematics. |
| 650 | 2 | 4 | _aMathematics, general. |
| 650 | 2 | 4 | _aMathematical Logic and Foundations. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9781461436300 |
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-1-4614-3631-7 |
| 912 | _aZDB-2-SMA | ||
| 999 |
_c94996 _d94996 |
||