000 12936nam a22005655i 4500
001 978-1-4614-2176-4
003 DE-He213
005 20140220082811.0
007 cr nn 008mamaa
008 120920s2013 xxu| s |||| 0|eng d
020 _a9781461421764
_9978-1-4614-2176-4
024 7 _a10.1007/978-1-4614-2176-4
_2doi
050 4 _aQA241-247.5
072 7 _aPBH
_2bicssc
072 7 _aMAT022000
_2bisacsh
082 0 4 _a512.7
_223
100 1 _aLapidus, Michel L.
_eauthor.
245 1 0 _aFractal Geometry, Complex Dimensions and Zeta Functions
_h[electronic resource] :
_bGeometry and Spectra of Fractal Strings /
_cby Michel L. Lapidus, Machiel van Frankenhuijsen.
250 _a2nd ed. 2013.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
300 _aXXVI, 567 p. 73 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Monographs in Mathematics,
_x1439-7382
505 0 _aPreface -- Overview -- Introduction -- 1. Complex Dimensions of Ordinary Fractal Strings -- 2. Complex Dimensions of Self-Similar Fractal Strings -- 3. Complex Dimensions of Nonlattice Self-Similar Strings -- 4. Generalized Fractal Strings Viewed as Measures -- 5. Explicit Formulas for Generalized Fractal Strings -- 6. The Geometry and the Spectrum of Fractal Strings -- 7. Periodic Orbits of Self-Similar Flows -- 8. Fractal Tube Formulas -- 9. Riemann Hypothesis and Inverse Spectral Problems -- 10. Generalized Cantor Strings and their Oscillations -- 11. Critical Zero of Zeta Functions -- 12 Fractality and Complex Dimensions -- 13. Recent Results and Perspectives -- Appendix A. Zeta Functions in Number Theory -- Appendix B. Zeta Functions of Laplacians and Spectral Asymptotics -- Appendix C. An Application of Nevanlinna Theory -- Bibliography -- Author Index -- Subject Index -- Index of Symbols -- Conventions -- Acknowledgements.
520 _aNumber theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings; that is, one-dimensional drums with fractal boundary. This second edition of Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, complex analysis, distribution theory, and mathematical physics. The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Key Features include: ·         The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings ·         Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra ·         Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal ·         Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula ·         The method of Diophantine approximation is used to study self-similar strings and flows ·         Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field. Review of the First Edition: " The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications." —Nicolae-Adrian Secelean, Zentralblatt   Key Features include: ·         The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings ·         Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra ·         Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal ·         Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula ·         The method of Diophantine approximation is used to study self-similar strings and flows ·         Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field. Review of the First Edition: " The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications." —Nicolae-Adrian Secelean, Zentralblatt   ·         Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal ·         Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula ·         The method of Diophantine approximation is used to study self-similar strings and flows ·         Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field. Review of the First Edition: " The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications." —Nicolae-Adrian Secelean, Zentralblatt     Key Features include: ·         The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings ·         Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra ·         Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal ·         Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula ·         The method of Diophantine approximation is used to study self-similar strings and flows ·         Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field. Review of the First Edition: " The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications." —Nicolae-Adrian Secelean, Zentralblatt   ·         Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal ·         Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula ·         The method of Diophantine approximation is used to study self-similar strings and flows ·         Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field. Review of the First Edition: " The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications." —Nicolae-Adrian Secelean, Zentralblatt     ·         Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal ·         Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula ·         The method of Diophantine approximation is used to study self-similar strings and flows ·         Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functions The unique viewpoint of this book culminates in the definition of fractality as the presence of nonreal complex dimensions. The final chapter (13) is new to the second edition and discusses several new topics, results obtained since the publication of the first edition, and suggestions for future developments in the field. Review of the First Edition: " The book is self contained, the material organized in chapters preceded by an introduction and finally there are some interesting applications of the theory presented. ...The book is very well written and organized and the subject is very interesting and actually has many applications." —Nicolae-Adrian Secelean, Zentralblatt       Key Features include: ·         The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings ·         Complex dimensions of a fractal string are studied in detail, and used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra ·         Explicit formulas are extended to apply to the geometric, spectral, and dynamical zeta functions associated with a fractal ·         Examples of such explicit formulas include a Prime Orbit Theorem with error term for self-similar flows, and a geometric tube formula ·         The method of Diophantine approximation is used to study self-similar strings and flows ·         Analytical and geometric methods are used to obtain new results
650 0 _aMathematics.
650 0 _aDifferentiable dynamical systems.
650 0 _aFunctional analysis.
650 0 _aGlobal analysis.
650 0 _aDifferential equations, partial.
650 0 _aNumber theory.
650 1 4 _aMathematics.
650 2 4 _aNumber Theory.
650 2 4 _aMeasure and Integration.
650 2 4 _aPartial Differential Equations.
650 2 4 _aDynamical Systems and Ergodic Theory.
650 2 4 _aGlobal Analysis and Analysis on Manifolds.
650 2 4 _aFunctional Analysis.
700 1 _avan Frankenhuijsen, Machiel.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461421757
830 0 _aSpringer Monographs in Mathematics,
_x1439-7382
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-2176-4
912 _aZDB-2-SMA
999 _c94939
_d94939