000 02744nam a22004575i 4500
001 978-1-4471-4558-5
003 DE-He213
005 20140220082806.0
007 cr nn 008mamaa
008 121116s2013 xxk| s |||| 0|eng d
020 _a9781447145585
_9978-1-4471-4558-5
024 7 _a10.1007/978-1-4471-4558-5
_2doi
050 4 _aQA8.9-10.3
072 7 _aPBC
_2bicssc
072 7 _aPBCD
_2bicssc
072 7 _aMAT018000
_2bisacsh
082 0 4 _a511.3
_223
100 1 _aDalen, Dirk.
_eauthor.
245 1 0 _aLogic and Structure
_h[electronic resource] /
_cby Dirk Dalen.
250 _a5th ed. 2013.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2013.
300 _aX, 263 p. 27 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aUniversitext,
_x0172-5939
505 0 _aIntroduction -- Propositional Logic -- Predicate Logic -- Completeness and Applications -- Second Order Logic -- Intuitionistic Logic -- Normalization -- Gödel's theorem.
520 _aDirk van Dalen’s popular textbook Logic and Structure, now in its fifth edition, provides a comprehensive introduction to the basics of classical and intuitionistic logic, model theory and Gödel’s famous incompleteness theorem. Propositional and predicate logic are presented in an easy-to-read style using Gentzen’s natural deduction. The book proceeds with some basic concepts and facts of model theory: a discussion on compactness, Skolem-Löwenheim, non-standard models and quantifier elimination. The discussion of classical logic is concluded with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, intuitionistic logic and Kripke semantics is carefully explored. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property are also included. The last chapter on Gödel's first incompleteness theorem is self-contained and provides a systematic exposition of the necessary recursion theory. This new edition has been properly revised and contains a new section on ultra-products.
650 0 _aMathematics.
650 0 _aLogic, Symbolic and mathematical.
650 1 4 _aMathematics.
650 2 4 _aMathematical Logic and Foundations.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781447145578
830 0 _aUniversitext,
_x0172-5939
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4471-4558-5
912 _aZDB-2-SMA
999 _c94648
_d94648