000 03178nam a22005295i 4500
001 978-0-8176-8364-1
003 DE-He213
005 20140220082758.0
007 cr nn 008mamaa
008 120922s2013 xxu| s |||| 0|eng d
020 _a9780817683641
_9978-0-8176-8364-1
024 7 _a10.1007/978-0-8176-8364-1
_2doi
050 4 _aQA166-166.247
072 7 _aPBV
_2bicssc
072 7 _aMAT013000
_2bisacsh
082 0 4 _a511.5
_223
100 1 _aPisanski, Tomaž.
_eauthor.
245 1 0 _aConfigurations from a Graphical Viewpoint
_h[electronic resource] /
_cby Tomaž Pisanski, Brigitte Servatius.
264 1 _aBoston :
_bBirkhäuser Boston :
_bImprint: Birkhäuser,
_c2013.
300 _aXIII, 279 p. 274 illus., 45 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aBirkhäuser Advanced Texts Basler Lehrbücher
505 0 _aPreface -- Introduction -- Graphs -- Groups, Actions, and Symmetry -- Maps -- Combinatorial Configurations -- Geometric Configurations -- Index -- Bibliography.
520 _aConfigurations can be studied from a graph-theoretical viewpoint via the so-called Levi graphs and lie at the heart of graphs, groups, surfaces, and geometries, all of which are very active areas of mathematical exploration. In this self-contained textbook, algebraic graph theory is used to introduce groups; topological graph theory is used to explore surfaces; and geometric graph theory is implemented to analyze incidence geometries. After a preview of configurations in Chapter 1, a concise introduction to graph theory is presented in Chapter 2, followed by a geometric introduction to groups in Chapter 3. Maps and surfaces are combinatorially treated in Chapter 4. Chapter 5 introduces the concept of incidence structure through vertex colored graphs, and the combinatorial aspects of classical configurations are studied. Geometric aspects, some historical remarks, references, and applications of classical configurations appear in the last chapter. With over two hundred illustrations, challenging exercises at the end of each chapter, a comprehensive bibliography, and a set of open problems, Configurations from a Graphical Viewpoint is well suited for a graduate graph theory course, an advanced undergraduate seminar, or a self-contained reference for mathematicians and researchers.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aCombinatorics.
650 0 _aGeometry.
650 0 _aTopology.
650 1 4 _aMathematics.
650 2 4 _aGraph Theory.
650 2 4 _aGeometry.
650 2 4 _aCombinatorics.
650 2 4 _aTopology.
650 2 4 _aAlgebraic Geometry.
700 1 _aServatius, Brigitte.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780817683634
830 0 _aBirkhäuser Advanced Texts Basler Lehrbücher
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-8176-8364-1
912 _aZDB-2-SMA
999 _c94210
_d94210