000 03186nam a22004815i 4500
001 978-94-6239-015-7
003 DE-He213
005 20140220082533.0
007 cr nn 008mamaa
008 131128s2014 fr | s |||| 0|eng d
020 _a9789462390157
_9978-94-6239-015-7
024 7 _a10.2991/978-94-6239-015-7
_2doi
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
082 0 4 _a515.353
_223
100 1 _aMeirmanov, Anvarbek.
_eauthor.
245 1 0 _aMathematical Models for Poroelastic Flows
_h[electronic resource] /
_cby Anvarbek Meirmanov.
264 1 _aParis :
_bAtlantis Press :
_bImprint: Atlantis Press,
_c2014.
300 _aXXXVIII, 449 p. 25 illus., 3 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAtlantis Studies in Differential Equations,
_x2214-6253 ;
_v1
505 0 _aIsothermal Liquid Filtration -- Filtration of a compressible thermo-fluid -- Hydraulic shock in incompressible poroelastic media -- Double porosity models for a liquid filtration -- Filtration in composite incompressible media -- Isothermal acoustics in poroelastic media -- Non-isothermal acoustics in poroelastic media -- Isothermal acoustics in composite media -- Double porosity models for acoustics -- Diffusion and convection in porous media -- The Muskat problem.
520 _aThe book is devoted to rigorous derivation of macroscopic mathematical models as a homogenization of exact mathematical models at the microscopic level. The idea is quite natural: one first must describe the joint motion of the elastic skeleton and the fluid in pores at the microscopic level by means of classical continuum mechanics, and then use homogenization to find appropriate approximation models (homogenized equations). The Navier-Stokes equations still hold at this scale of the pore size in the order of 5 – 15 microns. Thus, as we have mentioned above, the macroscopic mathematical models obtained are still within the limits of physical applicability. These mathematical models describe different physical processes of liquid filtration and acoustics in poroelastic media, such as isothermal or non-isothermal filtration, hydraulic shock, isothermal or non-isothermal acoustics, diffusion-convection, filtration and acoustics in composite media or in porous fractured reservoirs. Our research is based upon the Nguetseng two-scale convergent method.
650 0 _aMathematics.
650 0 _aDifferential equations, partial.
650 0 _aMathematical physics.
650 0 _aMechanics.
650 1 4 _aMathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aMechanics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9789462390140
830 0 _aAtlantis Studies in Differential Equations,
_x2214-6253 ;
_v1
856 4 0 _uhttp://dx.doi.org/10.2991/978-94-6239-015-7
912 _aZDB-2-SMA
999 _c94156
_d94156