000 02288nam a22004695i 4500
001 978-81-322-1647-6
003 DE-He213
005 20140220082526.0
007 cr nn 008mamaa
008 131017s2014 ii | s |||| 0|eng d
020 _a9788132216476
_9978-81-322-1647-6
024 7 _a10.1007/978-81-322-1647-6
_2doi
050 4 _aQA292
050 4 _aQA295
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515.24
_223
100 1 _aNatarajan, P.N.
_eauthor.
245 1 3 _aAn Introduction to Ultrametric Summability Theory
_h[electronic resource] /
_cby P.N. Natarajan.
264 1 _aNew Delhi :
_bSpringer India :
_bImprint: Springer,
_c2014.
300 _aIX, 102 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Mathematics,
_x2191-8198
505 0 _aPreface -- Introduction and Preliminaries.- Some Arithmetic and Analysis in Qp : Derivatives in Ultrametric Analysis.- Ultrametric Functional Analysis -- Ultrametric Summability Theory -- References -- Index.
520 _aUltrametric analysis has emerged as an important branch of mathematics in recent years. This book presents, for the first time, a brief survey of the research to date in ultrametric summability theory, which is a fusion of a classical branch of mathematics (summability theory) with a modern branch of analysis (ultrametric analysis). Several mathematicians have contributed to summability theory as well as functional analysis. The book will appeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aSequences (Mathematics).
650 1 4 _aMathematics.
650 2 4 _aSequences, Series, Summability.
650 2 4 _aAnalysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9788132216469
830 0 _aSpringerBriefs in Mathematics,
_x2191-8198
856 4 0 _uhttp://dx.doi.org/10.1007/978-81-322-1647-6
912 _aZDB-2-SMA
999 _c93770
_d93770