000 03113nam a22004935i 4500
001 978-4-431-54777-8
003 DE-He213
005 20140220082525.0
007 cr nn 008mamaa
008 140115s2014 ja | s |||| 0|eng d
020 _a9784431547778
_9978-4-431-54777-8
024 7 _a10.1007/978-4-431-54777-8
_2doi
050 4 _aQC173.96-174.52
072 7 _aPHQ
_2bicssc
072 7 _aSCI057000
_2bisacsh
082 0 4 _a530.12
_223
100 1 _aSugiyama, Takanori.
_eauthor.
245 1 0 _aFinite Sample Analysis in Quantum Estimation
_h[electronic resource] /
_cby Takanori Sugiyama.
264 1 _aTokyo :
_bSpringer Japan :
_bImprint: Springer,
_c2014.
300 _aXII, 118 p. 14 illus., 11 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
505 0 _aIntroduction -- Quantum Mechanics and Quantum Estimation — Background and Problems in Quantum Estimation -- Mathematical Statistics — Basic Concepts and Theoretical Tools for Finite Sample Analysis -- Evaluation of Estimation Precision in Test of Bell-type Correlations -- Evaluation of Estimation Precision in Quantum Tomography -- Improvement of Estimation Precision by Adaptive Design of Experiments -- Summary and Outlook.
520 _aIn this thesis, the author explains the background of problems in quantum estimation, the necessary conditions required for estimation precision benchmarks that are applicable and meaningful for evaluating data in quantum information experiments, and provides examples of such benchmarks. The author develops mathematical methods in quantum estimation theory and analyzes the benchmarks in tests of Bell-type correlation and quantum tomography with those methods. Above all, a set of explicit formulae for evaluating the estimation precision in quantum tomography with finite data sets is derived, in contrast to the standard quantum estimation theory, which can deal only with infinite samples. This is the first result directly applicable to the evaluation of estimation errors in quantum tomography experiments, allowing experimentalists to guarantee estimation precision and verify quantitatively that their preparation is reliable.
650 0 _aPhysics.
650 0 _aData structures (Computer science).
650 0 _aQuantum theory.
650 1 4 _aPhysics.
650 2 4 _aQuantum Physics.
650 2 4 _aQuantum Information Technology, Spintronics.
650 2 4 _aQuantum Optics.
650 2 4 _aMeasurement Science and Instrumentation.
650 2 4 _aData Structures, Cryptology and Information Theory.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9784431547761
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
856 4 0 _uhttp://dx.doi.org/10.1007/978-4-431-54777-8
912 _aZDB-2-PHA
999 _c93717
_d93717