| 000 | 03113nam a22004935i 4500 | ||
|---|---|---|---|
| 001 | 978-4-431-54777-8 | ||
| 003 | DE-He213 | ||
| 005 | 20140220082525.0 | ||
| 007 | cr nn 008mamaa | ||
| 008 | 140115s2014 ja | s |||| 0|eng d | ||
| 020 |
_a9784431547778 _9978-4-431-54777-8 |
||
| 024 | 7 |
_a10.1007/978-4-431-54777-8 _2doi |
|
| 050 | 4 | _aQC173.96-174.52 | |
| 072 | 7 |
_aPHQ _2bicssc |
|
| 072 | 7 |
_aSCI057000 _2bisacsh |
|
| 082 | 0 | 4 |
_a530.12 _223 |
| 100 | 1 |
_aSugiyama, Takanori. _eauthor. |
|
| 245 | 1 | 0 |
_aFinite Sample Analysis in Quantum Estimation _h[electronic resource] / _cby Takanori Sugiyama. |
| 264 | 1 |
_aTokyo : _bSpringer Japan : _bImprint: Springer, _c2014. |
|
| 300 |
_aXII, 118 p. 14 illus., 11 illus. in color. _bonline resource. |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5053 |
|
| 505 | 0 | _aIntroduction -- Quantum Mechanics and Quantum Estimation — Background and Problems in Quantum Estimation -- Mathematical Statistics — Basic Concepts and Theoretical Tools for Finite Sample Analysis -- Evaluation of Estimation Precision in Test of Bell-type Correlations -- Evaluation of Estimation Precision in Quantum Tomography -- Improvement of Estimation Precision by Adaptive Design of Experiments -- Summary and Outlook. | |
| 520 | _aIn this thesis, the author explains the background of problems in quantum estimation, the necessary conditions required for estimation precision benchmarks that are applicable and meaningful for evaluating data in quantum information experiments, and provides examples of such benchmarks. The author develops mathematical methods in quantum estimation theory and analyzes the benchmarks in tests of Bell-type correlation and quantum tomography with those methods. Above all, a set of explicit formulae for evaluating the estimation precision in quantum tomography with finite data sets is derived, in contrast to the standard quantum estimation theory, which can deal only with infinite samples. This is the first result directly applicable to the evaluation of estimation errors in quantum tomography experiments, allowing experimentalists to guarantee estimation precision and verify quantitatively that their preparation is reliable. | ||
| 650 | 0 | _aPhysics. | |
| 650 | 0 | _aData structures (Computer science). | |
| 650 | 0 | _aQuantum theory. | |
| 650 | 1 | 4 | _aPhysics. |
| 650 | 2 | 4 | _aQuantum Physics. |
| 650 | 2 | 4 | _aQuantum Information Technology, Spintronics. |
| 650 | 2 | 4 | _aQuantum Optics. |
| 650 | 2 | 4 | _aMeasurement Science and Instrumentation. |
| 650 | 2 | 4 | _aData Structures, Cryptology and Information Theory. |
| 710 | 2 | _aSpringerLink (Online service) | |
| 773 | 0 | _tSpringer eBooks | |
| 776 | 0 | 8 |
_iPrinted edition: _z9784431547761 |
| 830 | 0 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5053 |
|
| 856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-4-431-54777-8 |
| 912 | _aZDB-2-PHA | ||
| 999 |
_c93717 _d93717 |
||