000 03367nam a22004935i 4500
001 978-3-658-04476-3
003 DE-He213
005 20140220082523.0
007 cr nn 008mamaa
008 131129s2014 gw | s |||| 0|eng d
020 _a9783658044763
_9978-3-658-04476-3
024 7 _a10.1007/978-3-658-04476-3
_2doi
050 4 _aQA402.5-402.6
072 7 _aPBU
_2bicssc
072 7 _aMAT003000
_2bisacsh
082 0 4 _a519.6
_223
100 1 _aPotschka, Andreas.
_eauthor.
245 1 2 _aA Direct Method for Parabolic PDE Constrained Optimization Problems
_h[electronic resource] /
_cby Andreas Potschka.
264 1 _aWiesbaden :
_bSpringer Fachmedien Wiesbaden :
_bImprint: Springer Spektrum,
_c2014.
300 _aXIV, 216 p. 30 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAdvances in Numerical Mathematics,
_x1616-2994
505 0 _aParabolic PDE Constrained Optimization Problems -- Two-Grid Newton-Picard Inexact SQP -- Structure Exploiting Solution of QPs -- Applications and Numerical Results.
520 _aAndreas Potschka discusses a direct multiple shooting method for dynamic optimization problems constrained by nonlinear, possibly time-periodic, parabolic partial differential equations. In contrast to indirect methods, this approach automatically computes adjoint derivatives without requiring the user to formulate adjoint equations, which can be time-consuming and error-prone. The author describes and analyzes in detail a globalized inexact Sequential Quadratic Programming method that exploits the mathematical structures of this approach and problem class for fast numerical performance. The book features applications, including results for a real-world chemical engineering separation problem.   Contents ·         Parabolic PDE Constrained Optimization Problems ·         Two-Grid Newton-Picard Inexact SQP ·         Structure Exploiting Solution of QPs ·         Applications and Numerical Results       Target Groups ·         Researchers and students in the fields of mathematics, information systems, and scientific computing ·         Users with PDE constrained optimization problems, in particular in (bio-)chemical engineering   The Author Dr. Andreas Potschka is a postdoctoral researcher in the Simulation and Optimization group of Prof. Dr. Dres. h. c. Hans Georg Bock at the Interdisciplinary Center for Scientific Computing, Heidelberg University. He is the head of the research group Model-Based Optimizing Control.
650 0 _aMathematics.
650 0 _aBiochemical engineering.
650 0 _aDifferential equations, partial.
650 0 _aMathematical optimization.
650 1 4 _aMathematics.
650 2 4 _aOptimization.
650 2 4 _aMathematics, general.
650 2 4 _aBiochemical Engineering.
650 2 4 _aPartial Differential Equations.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783658044756
830 0 _aAdvances in Numerical Mathematics,
_x1616-2994
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-658-04476-3
912 _aZDB-2-SHU
999 _c93617
_d93617