000 04298nam a22005055i 4500
001 978-3-642-39007-4
003 DE-He213
005 20140220082518.0
007 cr nn 008mamaa
008 130917s2014 gw | s |||| 0|eng d
020 _a9783642390074
_9978-3-642-39007-4
024 7 _a10.1007/978-3-642-39007-4
_2doi
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
082 0 4 _a515.353
_223
100 1 _aChen, Gui-Qiang G.
_eeditor.
245 1 0 _aHyperbolic Conservation Laws and Related Analysis with Applications
_h[electronic resource] :
_bEdinburgh, September 2011 /
_cedited by Gui-Qiang G. Chen, Helge Holden, Kenneth H. Karlsen.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2014.
300 _aX, 384 p. 32 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Proceedings in Mathematics & Statistics,
_x2194-1009 ;
_v49
505 0 _aPreface by G.-Q. Chen, H. Holden, K. H. Karlsen -- B. Andreianov: Semigroup Approach for Conservation Laws with Discontinuous Flux -- F. Betancourt, R. Bürger, R. Ruiz-Baier, H.Torres, C. A. Vega: On Numerical Methods for Hyperbolic Conservation Laws and Related Equations Modeling Sedimentation of Solid-liquid suspensions -- L. Caravenna: SBV Regularity Results for Solutions to 1D Conservation Laws -- N. Chemetov, W. Neves: Generalized Buckley-Leverett System. - G.-Q. Chen, M. Slemrod, D. Wang: Entropy, Elasticity, and the Isometric Embedding Problem: M^3\to\R^6 -- G.-Q. Chen, W. Xiang: Existence and Stability of Global Solutions of Shock Diffraction Wedges for Potential Flow -- G. M. Coclite, L. di Ruvo, K. H. Karlsen: Some Wellposedness results for the Ostrovsky-Hunter Equation -- M. Ding, Ya. Li: An Overview for Piston Problems in Fluid Dynamics -- D. Donatelli, P. Marcati: Quasineutral Limit for the Navier-Stokes-Fourier-Poisson System -- H. Frid: Divergence-Measure Fields on Domains with Lipschitz Boundary -- T. Karper, A. Mellet, K. Trivisa: On Strong Local Alignment in the Kinetic Cucker-Smale Model -- D. Serre: Multi-Dimensional Systems of Conservation Laws. An Introductory Lecture -- B. Stevens: The Nash-Moser Iteration Technique with Application to Characteristic Free-Boundary Problems.
520 _aThis book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results  on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation.  Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model.    The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students interested in partial differential equations and related analysis with applications.  
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aDifferential equations, partial.
650 1 4 _aMathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aMathematical Physics.
650 2 4 _aMathematical Applications in the Physical Sciences.
650 2 4 _aAnalysis.
700 1 _aHolden, Helge.
_eeditor.
700 1 _aKarlsen, Kenneth H.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642390067
830 0 _aSpringer Proceedings in Mathematics & Statistics,
_x2194-1009 ;
_v49
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-39007-4
912 _aZDB-2-SMA
999 _c93290
_d93290