000 03336nam a22005055i 4500
001 978-3-319-01586-6
003 DE-He213
005 20140220082509.0
007 cr nn 008mamaa
008 131023s2014 gw | s |||| 0|eng d
020 _a9783319015866
_9978-3-319-01586-6
024 7 _a10.1007/978-3-319-01586-6
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aAlmezel, Saleh.
_eeditor.
245 1 0 _aTopics in Fixed Point Theory
_h[electronic resource] /
_cedited by Saleh Almezel, Qamrul Hasan Ansari, Mohamed Amine Khamsi.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2014.
300 _aXI, 304 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _a1 Introduction to Metric Fixed Point Theory. M.A. Khamsi -- 2 Banach Contraction Principle and its Generalizations. Abdul Latif -- 3 Ekeland’s Variational Principle and Its Extensions with Applications.  Qamrul Hasan Ansari -- 4 Fixed Point Theory in Hyperconvex Metric Spaces. Rafael Espínola and Aurora Fernández-León.- 5 An Introduction to Fixed Point Theory in Modular Function Spaces. W. M. Kozlowski.- 6 Fixed Point Theory in Ordered Sets from the Metric Point of View. M. Z. Abu-Sbeih and M. A. Khamsi.- 7 Some Fundamental Topological Fixed Point Theorems for Set-Valued Maps. Hichem Ben-El-Mechaiekh.- 8 Some Iterative Methods for Fixed Point Problems. Q. H. Ansari and D. R. Sahu -- Index.
520 _aThe purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland’s variational principle.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aFunctional analysis.
650 0 _aOperator theory.
650 0 _aMathematical optimization.
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
650 2 4 _aFunctional Analysis.
650 2 4 _aOperator Theory.
650 2 4 _aOptimization.
700 1 _aAnsari, Qamrul Hasan.
_eeditor.
700 1 _aKhamsi, Mohamed Amine.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319015859
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-01586-6
912 _aZDB-2-SMA
999 _c92692
_d92692