000 03083nam a22004695i 4500
001 978-3-319-01514-9
003 DE-He213
005 20140220082508.0
007 cr nn 008mamaa
008 130905s2014 gw | s |||| 0|eng d
020 _a9783319015149
_9978-3-319-01514-9
024 7 _a10.1007/978-3-319-01514-9
_2doi
050 4 _aQC610.9-611.8
072 7 _aTJFD5
_2bicssc
072 7 _aTEC008090
_2bisacsh
082 0 4 _a537.622
_223
100 1 _aWasley, Nicholas Andrew.
_eauthor.
245 1 0 _aNano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits
_h[electronic resource] /
_cby Nicholas Andrew Wasley.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2014.
300 _aXV, 129 p. 77 illus., 51 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
505 0 _aIntroduction -- Experimental methods -- Disorder limited photon propagation and Anderson localisation in photonic crystal waveguides -- On-chip interface for in-plane polarisation transfer for quantum information processing -- Direct in-plane readout of QD spin -- InP QDs in GaInP photonic crystal cavities -- Development of additional technological approaches -- Conclusions and future directions.
520 _aThis thesis breaks new ground in the physics of photonic circuits for quantum optical applications. The photonic circuits are based either on ridge waveguides or photonic crystals, with embedded quantum dots providing the single qubit, quantum optical emitters. The highlight of the thesis is the first demonstration of a spin-photon interface using an all-waveguide geometry, a vital component of a quantum optical circuit, based on deterministic single photon emission from a single quantum dot. The work makes a further important contribution to the field by demonstrating  the effects and limitations that inevitable disorder places on photon propagation in photonic crystal waveguides, a further key component of quantum optical circuits. Overall the thesis offers a number of highly novel contributions to the field; those on chip circuits may prove to be the only means of scaling up the highly promising quantum-dot-based quantum information technology.
650 0 _aPhysics.
650 1 4 _aPhysics.
650 2 4 _aSemiconductors.
650 2 4 _aQuantum Optics.
650 2 4 _aQuantum Information Technology, Spintronics.
650 2 4 _aOptics, Optoelectronics, Plasmonics and Optical Devices.
650 2 4 _aLaser Technology, Photonics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319015132
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5053
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-01514-9
912 _aZDB-2-PHA
999 _c92676
_d92676