000 02682nam a22004455i 4500
001 978-1-4614-9638-0
003 DE-He213
005 20140220082505.0
007 cr nn 008mamaa
008 140124s2014 xxu| s |||| 0|eng d
020 _a9781461496380
_9978-1-4614-9638-0
024 7 _a10.1007/978-1-4614-9638-0
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aPons, Matthew A.
_eauthor.
245 1 0 _aReal Analysis for the Undergraduate
_h[electronic resource] :
_bWith an Invitation to Functional Analysis /
_cby Matthew A. Pons.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2014.
300 _aXVIII, 409 p. 43 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aThe Real Numbers -- Sequences in R -- Numerical Series -- Continuity -- The Derivative -- Sequence and Series of Functions -- The Riemann Integral -- Lebesgue Measure on R -- Lebesgue Integration .
520 _aThis undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aFunctional analysis.
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
650 2 4 _aReal Functions.
650 2 4 _aFunctional Analysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461496373
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-9638-0
912 _aZDB-2-SMA
999 _c92404
_d92404