000 02792nam a22005055i 4500
001 978-1-4614-8957-3
003 DE-He213
005 20140220082503.0
007 cr nn 008mamaa
008 131023s2014 xxu| s |||| 0|eng d
020 _a9781461489573
_9978-1-4614-8957-3
024 7 _a10.1007/978-1-4614-8957-3
_2doi
050 4 _aQA402.5-402.6
072 7 _aPBU
_2bicssc
072 7 _aMAT003000
_2bisacsh
082 0 4 _a519.6
_223
100 1 _aPitsoulis, Leonidas S.
_eauthor.
245 1 0 _aTopics in Matroid Theory
_h[electronic resource] /
_cby Leonidas S. Pitsoulis.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2014.
300 _aXIV, 127 p. 46 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Optimization,
_x2190-8354
505 0 _a1.Introduction -- 2.Graph Theory, Vector Spaces and Transversals -- 3.Definition of Matroids -- 4.Representability, Duality, Minors, and Connectivity -- 5. Decomposition of Graphic Matroids -- 6.Signed-Graphic Matroids -- List of Symbols -- Index.
520 _aTopics in Matroid Theory provides a brief introduction to matroid theory with an emphasis on algorithmic consequences.Matroid theory is at the heart of combinatorial optimization and has attracted various pioneers such as Edmonds, Tutte, Cunningham and Lawler among others. Matroid theory encompasses matrices, graphs and other combinatorial entities under a common, solid algebraic framework, thereby providing the analytical tools to solve related difficult algorithmic problems. The monograph contains a rigorous axiomatic definition of matroids along with other necessary concepts such as duality, minors, connectivity and representability as demonstrated in matrices, graphs and transversals. The author also presents a deep decomposition result in matroid theory that provides  a structural characterization of graphic matroids, and show how this can be extended to signed-graphic matroids, as well as the immediate algorithmic consequences.  
650 0 _aMathematics.
650 0 _aAlgorithms.
650 0 _aCombinatorics.
650 0 _aGeometry.
650 1 4 _aMathematics.
650 2 4 _aContinuous Optimization.
650 2 4 _aAlgorithms.
650 2 4 _aCombinatorics.
650 2 4 _aGraph Theory.
650 2 4 _aGeometry.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461489566
830 0 _aSpringerBriefs in Optimization,
_x2190-8354
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-8957-3
912 _aZDB-2-SMA
999 _c92287
_d92287