000 03082nam a22004455i 4500
001 978-1-4614-8775-3
003 DE-He213
005 20140220082503.0
007 cr nn 008mamaa
008 131114s2014 xxu| s |||| 0|eng d
020 _a9781461487753
_9978-1-4614-8775-3
024 7 _a10.1007/978-1-4614-8775-3
_2doi
050 4 _aQA276-280
072 7 _aUFM
_2bicssc
072 7 _aCOM077000
_2bisacsh
082 0 4 _a519.5
_223
100 1 _aKroese, Dirk P.
_eauthor.
245 1 0 _aStatistical Modeling and Computation
_h[electronic resource] /
_cby Dirk P. Kroese, Joshua C.C. Chan.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2014.
300 _aXX, 400 p. 114 illus., 8 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aProbability Models -- Random Variables and Probability Distributions -- Joint Distributions -- Common Statistical Models -- Statistical Inference -- Likelihood -- Monte Carlo Sampling -- Bayesian Inference -- Generalized Linear Models -- Dependent Data Models -- State Space Models -- References -- Solutions -- MATLAB Primer -- Mathematical Supplement -- Index.
520 _aThis textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.
650 0 _aStatistics.
650 0 _aMathematical statistics.
650 1 4 _aStatistics.
650 2 4 _aStatistics and Computing/Statistics Programs.
650 2 4 _aStatistics for Life Sciences, Medicine, Health Sciences.
650 2 4 _aStatistical Theory and Methods.
700 1 _aC.C. Chan, Joshua.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9781461487746
856 4 0 _uhttp://dx.doi.org/10.1007/978-1-4614-8775-3
912 _aZDB-2-SMA
999 _c92244
_d92244