000 01802nam a22005055i 4500
001 978-0-387-84858-7
003 DE-He213
005 20130515020622.0
007 cr nn 008mamaa
008 100301s2009 xxu| s |||| 0|eng d
020 _a9780387848587
_9978-0-387-84858-7
024 7 _a10.1007/978-0-387-84858-7
_2doi
050 4 _aQA276-280
072 7 _aPBT
_2bicssc
072 7 _aMAT029000
_2bisacsh
082 0 4 _a519.5
_223
100 1 _aHastie, Trevor.
245 1 4 _aThe Elements of Statistical Learning
_h[electronic resource] :
_bData Mining, Inference, and Prediction /
_cby Trevor Hastie, Robert Tibshirani, Jerome Friedman.
250 _aSecond.
260 _aNew York, NY :
_bSpringer New York,
_c2009.
300 _bdigital.
490 0 _aSpringer Series in Statistics,
_x0172-7397
650 0 _aStatistics.
650 0 _aData mining.
650 0 _aArtificial intelligence.
650 0 _aBioinformatics.
650 0 _aBiology
_xData processing.
650 0 _aMathematical statistics.
650 1 4 _aStatistics.
650 2 4 _aStatistical Theory and Methods.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aComputational Biology/Bioinformatics.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aComputer Appl. in Life Sciences.
650 2 4 _aStatistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
700 1 _aTibshirani, Robert.
700 1 _aFriedman, Jerome.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9780387848570
830 0 _aSpringer Series in Statistics,
_x0172-7397
856 4 0 _uhttp://dx.doi.org/10.1007/978-0-387-84858-7
912 _aZDB-2-SMA
999 _c68397
_d68397