| 000 | 03091cam a2200553Ii 4500 | ||
|---|---|---|---|
| 001 | 9780429490972 | ||
| 003 | FlBoTFG | ||
| 005 | 20220509193132.0 | ||
| 006 | m o d | ||
| 007 | cr cnu---unuuu | ||
| 008 | 190607s2020 flu ob 001 0 eng d | ||
| 040 |
_aOCoLC-P _beng _erda _epn _cOCoLC-P |
||
| 020 |
_a9780429490972 _qelectronic book |
||
| 020 |
_a0429490976 _qelectronic book |
||
| 020 |
_a9780429956508 _qelectronic book |
||
| 020 |
_a0429956509 _qelectronic book |
||
| 020 |
_a9780429956515 _qelectronic book |
||
| 020 |
_a0429956517 _qelectronic book |
||
| 020 |
_z9780429956492 _qelectronic book |
||
| 020 |
_z0429956495 _qelectronic book |
||
| 020 | _z9781138590526 | ||
| 020 | _z1138590525 | ||
| 035 | _a(OCoLC)1103917723 | ||
| 035 | _a(OCoLC-P)1103917723 | ||
| 050 | 4 |
_aTJ820 _b.D56 2020 |
|
| 072 | 7 |
_aTEC _x009070 _2bisacsh |
|
| 072 | 7 |
_aBUS _x061000 _2bisacsh |
|
| 072 | 7 |
_aCOM _x000000 _2bisacsh |
|
| 072 | 7 |
_aCOM _x012040 _2bisacsh |
|
| 072 | 7 |
_aUN _2bicssc |
|
| 082 | 0 | 4 |
_a621.31/21360285 _223 |
| 082 | 0 | 4 |
_a621.45 _223 |
| 100 | 1 |
_aDing, Yu _c(Electrical and Computer Engineer), _eauthor. |
|
| 245 | 1 | 0 |
_aData science for wind energy / _cYu Ding. |
| 264 | 1 |
_aBoca Raton : _bCRC Press, _c[2020] |
|
| 300 |
_a1 online resource : _billustrations |
||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 520 | _aData Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights | ||
| 588 | _aOCLC-licensed vendor bibliographic record. | ||
| 650 | 0 |
_aWind power _xMathematical models. |
|
| 650 | 0 |
_aWind power _xData processing. |
|
| 650 | 7 |
_aTECHNOLOGY & ENGINEERING / Mechanical _2bisacsh |
|
| 650 | 7 |
_aBUSINESS & ECONOMICS / Statistics _2bisacsh |
|
| 650 | 7 |
_aCOMPUTERS / General _2bisacsh |
|
| 650 | 7 |
_aCOMPUTERS / Computer Graphics / Game Programming & Design _2bisacsh |
|
| 856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9780429490972 |
| 856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
| 999 |
_c130591 _d130591 |
||