000 03091cam a2200553Ii 4500
001 9780429490972
003 FlBoTFG
005 20220509193132.0
006 m o d
007 cr cnu---unuuu
008 190607s2020 flu ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9780429490972
_qelectronic book
020 _a0429490976
_qelectronic book
020 _a9780429956508
_qelectronic book
020 _a0429956509
_qelectronic book
020 _a9780429956515
_qelectronic book
020 _a0429956517
_qelectronic book
020 _z9780429956492
_qelectronic book
020 _z0429956495
_qelectronic book
020 _z9781138590526
020 _z1138590525
035 _a(OCoLC)1103917723
035 _a(OCoLC-P)1103917723
050 4 _aTJ820
_b.D56 2020
072 7 _aTEC
_x009070
_2bisacsh
072 7 _aBUS
_x061000
_2bisacsh
072 7 _aCOM
_x000000
_2bisacsh
072 7 _aCOM
_x012040
_2bisacsh
072 7 _aUN
_2bicssc
082 0 4 _a621.31/21360285
_223
082 0 4 _a621.45
_223
100 1 _aDing, Yu
_c(Electrical and Computer Engineer),
_eauthor.
245 1 0 _aData science for wind energy /
_cYu Ding.
264 1 _aBoca Raton :
_bCRC Press,
_c[2020]
300 _a1 online resource :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 _aData Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aWind power
_xMathematical models.
650 0 _aWind power
_xData processing.
650 7 _aTECHNOLOGY & ENGINEERING / Mechanical
_2bisacsh
650 7 _aBUSINESS & ECONOMICS / Statistics
_2bisacsh
650 7 _aCOMPUTERS / General
_2bisacsh
650 7 _aCOMPUTERS / Computer Graphics / Game Programming & Design
_2bisacsh
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780429490972
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c130591
_d130591