000 05155cam a22005778i 4500
001 9780429457548
003 FlBoTFG
005 20220509193130.0
006 m d | |
007 cr |||||||||||
008 190612t20192018flu ob 001 0 eng
040 _aOCoLC-P
_beng
_erda
_cOCoLC-P
020 _a9780429457548
_q(ebook)
020 _a0429457545
020 _a9780429855054
_q(electronic bk. : PDF)
020 _a0429855052
_q(electronic bk. : PDF)
020 _a9780429855047
_q(electronic bk. : EPUB)
020 _a0429855044
_q(electronic bk. : EPUB)
020 _z9781138313477
_q(hardback)
035 _a(OCoLC)1105736142
035 _a(OCoLC-P)1105736142
050 0 0 _aHG106
072 7 _aMAT
_x000000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
072 7 _aMAT
_x029010
_2bisacsh
072 7 _aPBT
_2bicssc
082 0 0 _a515/.732
_223
100 1 _aSvishchuk, A. V.
_q(Anatoliĭ Vitalʹevich),
_eauthor.
245 1 0 _aInhomogeneous random evolutions and their applications /
_cby Anatoliy Swishchuk.
264 1 _aBoca Raton, FL :
_bCRC Press, Taylor & Francis Group,
_c[2019]
264 4 _c©2018
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
520 _a"The book deals with inhomogeneous REs and their applications, which are more general and more applicable because they describe in a much better way the evolutions of many processes in real world, which have no homogeneous evolution/behaviour, including economics, finance and insurance"--
_cProvided by publisher.
505 0 _aCover; Half Title; Title Page; Copyright Page; Dedication; Contents; Preface; Acknowledgments; Introduction; Part I: Stochastic Calculus in Banach Spaces; 1. Basics in Banach Spaces; 1.1 Random Elements, Processes and Integrals in Banach Spaces; 1.2 Weak Convergence in Banach Spaces; 1.3 Semigroups of Operators and Their Generators; Bibliography; 2. Stochastic Calculus in Separable Banach Spaces; 2.1 Stochastic Calculus for Integrals over Martingale Measures; 2.1.1 The Existence of Wiener Measure and Related Stochastic Equations; 2.1.2 Stochastic Integrals over Martingale Measures
505 8 _a2.1.2.1 Orthogonal Martingale Measures2.1.2.2 Ito's Integrals over Martingale Measures; 2.1.2.3 Symmetric (Stratonovich) Integral over Martingale Measure; 2.1.2.4 Anticipating (Skorokhod) Integral over Martingale Measure; 2.1.2.5 Multiple Ito's Integral over Martingale Measure; 2.1.3 Stochastic Integral Equations over Martingale Measures; 2.1.4 Martingale Problems Associated with Stochastic Equations over Martingale Measures; 2.1.5 Evolutionary Operator Equations Driven by Wiener Martingale Measures; 2.2 Stochastic Calculus for Multiplicative Operator Functionals (MOF)
505 8 _a2.2.1 Definition of MOF2.2.2 Properties of the Characteristic Operator of MOF; 2.2.3 Resolvent and Potential for MOF; 2.2.4 Equations for Resolvent and Potential for MOF; 2.2.5 Analogue of Dynkin's Formulas (ADF) for MOF; 2.2.6 Analogue of Dynkin's Formulae (ADF) for SES; 2.2.6.1 ADF for Traffic Processes in Random Media; 2.2.6.2 ADF for Storage Processes in Random Media; 2.2.6.3 ADF for Diffusion Process in Random Media; Bibliography; 3. Convergence of Random Bounded Linear Operators in the Skorokhod Space; 3.1 Introduction
505 8 _a3.2 D-Valued Random Variables and Various Propertieson Elements of D3.3 Almost Sure Convergence of D-Valued RandomVariables; 3.4 Weak Convergence of D-Valued Random Variables; Bibliography; Part II: Homogeneous and Inhomogeneous Random Evolutions; 4. Homogeneous Random Evolutions (HREs) and their Applications; 4.1 Random Evolutions; 4.1.1 Definition and Classification of Random Evolutions; 4.1.2 Some Examples of RE; 4.1.3 Martingale Characterization of Random Evolutions; 4.1.4 Analogue of Dynkin's Formula for RE (see Chapter 2); 4.1.5 Boundary Value Problems for RE (see Chapter 2)
505 8 _a4.2 Limit Theorems for Random Evolutions4.2.1 Weak Convergence of Random Evolutions (see Chapter 2 and 3); 4.2.2 Averaging of Random Evolutions; 4.2.3 Diffusion Approximation of Random Evolutions; 4.2.4 Averaging of Random Evolutions in Reducible Phase Space Merged Random Evolutions; 4.2.5 Diffusion Approximation of Random Evolutions in Reducible Phase Space; 4.2.6 Normal Deviations of Random Evolutions; 4.2.7 Rates of Convergence in the Limit Theorems for RE; Bibliography; 5. Inhomogeneous Random Evolutions (IHREs); 5.1 Propagators (Inhomogeneous Semigroup of Operators)
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aFinance
_xMathematical models.
650 0 _aInsurance
_xMathematical models.
650 0 _aStochastic processes.
650 0 _aBanach spaces.
650 7 _aMATHEMATICS / General
_2bisacsh
650 7 _aMATHEMATICS / Probability & Statistics / General
_2bisacsh
650 7 _aMATHEMATICS / Probability & Statistics / Bayesian Analysis
_2bisacsh
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780429457548
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c130546
_d130546