000 03041cam a22005291i 4500
001 9780367809232
003 FlBoTFG
005 20220509193120.0
006 m d
007 cr |||||||||||
008 200113s2020 flu o 000 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781000033090
_q(ePub ebook)
020 _a1000033090
020 _a9781000033076
_q(PDF ebook)
020 _a1000033074
020 _a9781000033083
_q(Mobipocket ebook)
020 _a1000033082
020 _a9780367809232
_q(ebook)
020 _a0367809230
020 _z9780367408206 (hbk.)
024 7 _a10.1201/9780367809232
_2doi
035 _a(OCoLC)1144807173
035 _a(OCoLC-P)1144807173
050 4 _aQA55
072 7 _aMAT
_x029000
_2bisacsh
072 7 _aTEC
_x067000
_2bisacsh
072 7 _aMAT
_x007020
_2bisacsh
072 7 _aPBK
_2bicssc
082 0 4 _a519.2
_223
100 1 _aKorotkov, N. E.
_q(Nikolaĭ Efimovich),
_eauthor.
245 1 0 _aIntegrals related to the error function /
_cNikolai E. Korotkov, Alexander N. Korotkov.
250 _a1st.
264 1 _aBoca Raton :
_bChapman & Hall/CRC,
_c2020.
300 _a1 online resource
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
500 _aIntroduction. Part 1. Indefinite integrals. Part 2. Definite integrals. Appendix: Some useful formulas for obtaining other integrals.
520 _aIntegrals Related to the Error Function presents a table of integrals related to the error function, including indefinite and improper definite integrals. Most of the formulas in this book have not been presented in other tables of integrals or have been presented only for some special cases of parameters or for integration only along the real axis of the complex plane. Many of the integrals presented here cannot be obtained using a computer (except via an approximate numerical integration). Additionally, for improper integrals, this book emphasizes the necessary and sufficient conditions for the validity of the presented formulas, including trajectory for going to infinity on the complex plane; such conditions are usually not given in computer-assisted analytical integration and often not presented in the previously published tables of integrals. Features The first book in English language to present a comprehensive collection of integrals related to the error function Useful for researchers whose work involves the error function (e.g., via probability integrals in communication theory). Additionally, it can also be used by broader audience.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aError functions.
650 0 _aProbabilities.
650 7 _aMATHEMATICS / Probability & Statistics / General
_2bisacsh
700 1 _aKorotkov, Alexander N.,
_eauthor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780367809232
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c130189
_d130189