000 03860cam a2200589Ki 4500
001 9781315155289
003 FlBoTFG
005 20220509193041.0
006 m o d
007 cr cnu---unuuu
008 190308s2019 flu ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781315155289
_q(electronic bk.)
020 _a1315155281
_q(electronic bk.)
020 _a9781351641821
_q(electronic bk. : Mobipocket)
020 _a1351641824
_q(electronic bk. : Mobipocket)
020 _a9781498781626
_q(electronic bk. : PDF)
020 _a1498781624
_q(electronic bk. : PDF)
020 _a9781351651332
_q(electronic bk. : EPUB)
020 _a1351651331
_q(electronic bk. : EPUB)
020 _z9781498781619
020 _z1498781616
035 _a(OCoLC)1089446088
035 _a(OCoLC-P)1089446088
050 4 _aQA360
_b.L37 2019eb
072 7 _aMAT
_x005000
_2bisacsh
072 7 _aMAT
_x034000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
072 7 _aMAT
_x036000
_2bisacsh
072 7 _aPBT
_2bicssc
082 0 4 _a515/.9
_223
100 1 _aLe Roux, Brigitte,
_eauthor.
245 1 0 _aCombinatorial inference in geometric data analysis /
_cBrigitte Le Roux, Solène Bienaise, Jean-Luc Durand.
264 1 _aBoca Raton, Florida :
_bCRC Press,
_c[2019]
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aChapman & Hall/CRC computer science and data analysis series
520 _aGeometric Data Analysis designates the approach of Multivariate Statistics that conceptualizes the set of observations as a Euclidean cloud of points. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework. It focuses particularly on the comparison of a group of observations to a reference population (combinatorial test) or to a reference value of a location parameter (geometric test), and on problems of homogeneity, that is the comparison of several groups for two basic designs. These methods involve the use of combinatorial procedures to build a reference set in which we place the data. The chosen test statistics lead to original extensions, such as the geometric interpretation of the observed level, and the construction of a compatibility region. Features: Defines precisely the object under study in the context of multidimensional procedures, that is clouds of points Presents combinatorial tests and related computations with R and Coheris SPAD software Includes four original case studies to illustrate application of the tests Includes necessary mathematical background to ensure it is self-contained This book is suitable for researchers and students of multivariate statistics, as well as applied researchers of various scientific disciplines. It could be used for a specialized course taught at either master or PhD level.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aGeometric analysis.
650 0 _aCombinatorial analysis.
650 0 _aStatistics.
650 7 _aMATHEMATICS / Calculus
_2bisacsh
650 7 _aMATHEMATICS / Mathematical Analysis
_2bisacsh
650 7 _aMATHEMATICS / Probability & Statistics / General
_2bisacsh
650 7 _aMATHEMATICS / Combinatorics
_2bisacsh
700 1 _aBienaise, Solène,
_d1986-
_eauthor.
700 1 _aDurand, Jean-Luc
_c(Mathematician),
_eauthor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781315155289
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c128882
_d128882