000 05957cam a2200673Ii 4500
001 9781315121062
003 FlBoTFG
005 20220509193040.0
006 m o d
007 cr cnu---unuuu
008 190215s2019 flu ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781351647380
_q(electronic bk.)
020 _a1351647385
_q(electronic bk.)
020 _a9781315121062
_q(electronic bk.)
020 _a1315121069
_q(electronic bk.)
020 _a9781351637879
_q(electronic bk. : Mobipocket)
020 _a1351637878
_q(electronic bk. : Mobipocket)
020 _a9781498738217
_q(electronic bk. : PDF)
020 _a1498738214
_q(electronic bk. : PDF)
020 _z9781498738200
020 _z1498738206
035 _a(OCoLC)1085890874
035 _a(OCoLC-P)1085890874
050 4 _aTA404.3
_b.S77 2019eb
072 7 _aTEC
_x009000
_2bisacsh
072 7 _aTEC
_x035000
_2bisacsh
072 7 _aTEC
_x021000
_2bisacsh
072 7 _aSCI
_x077000
_2bisacsh
072 7 _aMAT
_x029000
_2bisacsh
072 7 _aTGM
_2bicssc
082 0 4 _a620.1/10727
_223
245 0 0 _aStatistical methods for materials science :
_bthe data science of microstructure characterization /
_cedited by Jeffrey P. Simmons, Charles A. Bouman, Marc De Graef, Lawrence F. Drummy, Jr.
264 1 _aBoca Raton, Florida :
_bCRC Press,
_c[2019]
264 4 _c©2019
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aCover; Half Title; Title Page; Copyright Page; Contents; Preface; About the Editors; Contributors; I Introduction; 1 Materials Science vs. Data Science; II Emerging Data Science in Microstructure Characterization; 2 Emerging Digital Data Capabilities; 2.1 Introduction; 2.2 Benefits of Large Data Volumes; 2.3 Challenges of Large Data Volumes; 2.4 Emerging Techniques; 2.4.1 Multi-Instrument Coordination; 2.4.2 Upstream Data Analysis; 2.4.3 Data Mining; 2.4.4 Data Curation; 2.5 Conclusions; 3 Cultural Differences; 3.1 What Makes Modern Image Processing So Modern?
505 8 _a3.2 Language of Image Processing3.2.1 Notational Differences; 3.2.1.1 Sets; 3.2.1.2 Operations on Sets; 3.2.1.3 Computations on Sets; 3.2.2 Bayesian Probability and Image Processing; 3.2.2.1 Modern Probability and Sets; 3.2.2.2 Foundational Rules of Modern Probability; 3.2.2.3 Mathematical Constructs; 3.2.2.4 Bayesian Probability in Image Processing; 3.3 Language of Materials Science; 3.3.1 Thermodynamic Phases; 3.3.2 Free Energies; 3.4 Concluding Remarks; 4 Forward Modeling; 4.1 What Is Forward Modeling?; 4.1.1 What Are the Unknowns in Materials Characterization?
505 8 _a4.1.2 A Schematic Description of Forward Modeling4.2 A Brief Overview of Electron Scattering Modalities; 4.3 Case Studies; 4.3.1 Electron Backscatter Diffraction; 4.3.1.1 BSE Monte Carlo Simulations; 4.3.1.2 Dynamical Scattering Simulations; 4.3.1.3 Detector Parameters; 4.3.2 Lorentz Vector Field Electron Tomography; 4.3.2.1 Lorentz Forward Model; 4.3.2.2 Electron Wave Phase Shift Computations; 4.3.2.3 Example Lorentz Image Simulation; 4.4 Summary; 5 Inverse Problems and Sensing; 5.1 Introduction; 5.2 Traditional Approaches to Inversion; 5.3 Bayesian and Regularized Approaches to Inversion
505 8 _a5.4 Why Does Bayesian Estimation Work?5.5 Model-Based Reconstruction; 5.6 Successes and Opportunities of Bayesian Inversion; III Inverse Methods for Analysis of Data; 6 Model-Based Iterative Reconstruction for Electron Tomography; 6.1 Introduction; 6.2 Model-Based Iterative Reconstruction; 6.3 High-Angle Annular Dark-Field STEM Tomography; 6.3.1 HAADF-STEM Forward Model; 6.3.2 Prior Model; 6.3.3 Cost Function Formulation and Optimization Algorithm; 6.3.4 Experimental Results; 6.3.4.1 Simulated Dataset; 6.3.4.2 Experimental Dataset; 6.4 Bright-Field Electron Tomography
505 8 _a6.4.1 BF-TEM Forward Model and Cost Function Formulation6.4.1.1 Generalized Huber Functions for Anomaly Modeling; 6.4.1.2 MBIR Cost Formulation; 6.4.2 Results; 6.4.2.1 Simulated Dataset; 6.4.2.2 Real Dataset; 6.5 Future Directions; 6.6 Conclusion; 7 Statistical Reconstruction and Heterogeneity Characterization in 3-D Biological Macromolecular Complexes; 7.1 Introduction; 7.2 Statistical 3-D Signal Reconstruction of Macromolecular Complexes; 7.2.1 Introduction; 7.2.2 Statistical Model; 7.2.3 Relationship between the Moments of the Weights and the Moments of the Electron Scattering Intensity
520 _aData analytics has become an integral part of materials science. This book provides the practical tools and fundamentals needed for researchers in materials science to understand how to analyze large datasets using statistical methods, especially inverse methods applied to microstructure characterization. It contains valuable guidance on essential topics such as denoising and data modeling. Additionally, the analysis and applications section addresses compressed sensing methods, stochastic models, extreme estimation, and approaches to pattern detection.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aMaterials science
_xMathematical models.
650 0 _aMaterials science
_xStatistical methods.
650 7 _aTECHNOLOGY & ENGINEERING / Engineering (General)
_2bisacsh
650 7 _aTECHNOLOGY & ENGINEERING / Reference
_2bisacsh
650 7 _aTECHNOLOGY / Material Science
_2bisacsh
650 7 _aSCIENCE / Solid State Physics
_2bisacsh
650 7 _aMATHEMATICS / Probability & Statistics / General
_2bisacsh
700 1 _aSimmons, Jeffrey P.,
_eeditor.
700 1 _aBouman, Charles Addison,
_eeditor.
700 1 _aDe Graef, Marc,
_eeditor.
700 1 _aDrummy, Lawrence F.,
_eeditor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781315121062
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c128851
_d128851