000 04069nam a2200493Ii 4500
001 9781351231794
003 FlBoTFG
005 20220509193016.0
006 m o d
007 cr
008 181112s2018 fluab ob 001 0 eng d
020 _a9781351231794
_q(e-book : PDF)
035 _a(OCoLC)1053796340
040 _aFlBoTFG
_cFlBoTFG
_erda
041 1 _aeng
072 7 _aTEC
_x007000
_2bisacsh
072 7 _aTEC
_x008000
_2bisacsh
072 7 _aTHRB
_2bicscc
100 1 _aArana-Daniel, Nancy,
_eauthor.
245 1 0 _aNeural Networks for Robotics :
_bAn Engineering Perspective /
_cby Nancy Arana-Daniel, Alma Y. Alanis and Carlos Lopez-Franco.
250 _aFirst edition.
264 1 _aBoca Raton, FL :
_bCRC Press,
_c2018.
300 _a1 online resource (227 pages) :
_b176 illustrations, text file, PDF
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 0 _tChapter 1 Recurrent High Order Neural Networks for rough terrain cost mapping --
_t1.1 Introduction --
_t1.2 Recurrent High Order Neural Networks, RHONN --
_t1.3 Experimental results: identification of costs maps using RHONNs --
_t1.4 Conclusions --
_t--Chapter 2 Geometric Neural Networks for object recognition --
_t2.1 Object recognition and geometric representations of objects --
_t2.2 Geometric algebra: An overview --
_t2.3 Clifford SVM --
_t2.4 Conformal neuron and hyper-conformal neurons --
_t2.5 Conclusions --
_t--Chapter 3 Non-holonomic Mobile Robot Control using Recurrent High Order Neural Networks --
_t3.1 Introduction --
_t3.2 RHONN to Identify Uncertain Discrete-Time Nonlinear Systems --
_t3.3 Neural Identification --
_t3.4 Inverse Optimal Neural Control --
_t3.5 IONC for Non-holonomic Mobile Robots --
_t3.6 Conclusions --
_t--Chapter 4 Neural Networks for Autonomous Navigation on Nonholonomic Mobile Robots --
_t4.1 Introduction --
_t4.2 Simultaneous Localization and Mapping --
_t4.3 Reinforcement Learning --
_t4.4 Inverse Optimal Neural Controller --
_t4.5 Experimental Results --
_t4.6 Conclusions --
_t--Chapter 5 Holonomic Robot Control using Neural Networks --
_t5.1 Introduction --
_t5.2 Optimal Control --
_t5.3 Inverse Optimal Control --
_t5.4 Holonomic robot --
_t5.5 Visual feedback --
_t5.6 Simulation --
_t5.7 Conclusions --
_t--Chapter 6 Neural network based controller for Unmanned Aerial Vehicles --
_t6.1 Introduction --
_t6.2 Quadrotor dynamic modeling --
_t6.3 Hexarotor dynamic modeling --
_t6.4 Neural Network based PID --
_t6.5 Visual Servo Control --
_t6.6 Simulation results --
_t6.7 Experimental Results --
_t6.8 Conclusions
520 3 _aThe book offers an insight on artificial neural networks for giving a robot a high level of autonomous tasks, such as navigation, cost mapping, object recognition, intelligent control of ground and aerial robots, and clustering, with real-time implementations. The reader will learn various methodologies that can be used to solve each stage on autonomous navigation for robots, from object recognition, clustering of obstacles, cost mapping of environments, path planning, and vision to low level control. These methodologies include real-life scenarios to implement a wide range of artificial neural network architectures.
530 _aAlso available in print format.
650 7 _aTECHNOLOGY & ENGINEERING / Electronics / General.
_2bisacsh
650 7 _acost mapping of environments.
_2bisacsh
650 7 _aground and aerial robots.
_2bisacsh
650 7 _aintelligent control.
_2bisacsh
650 7 _apattern classification.
_2bisacsh
650 7 _arobot navigation.
_2bisacsh
650 0 _aRobots
_xControl systems.
650 0 _aNeural networks (Computer science)
655 0 _aElectronic books.
700 1 _aAlanis, Alma Y.,
_eauthor.
700 1 _aLopez-Franco, Carlos,
_eauthor.
710 2 _aTaylor and Francis.
776 0 8 _iPrint version:
_z9780815378686
856 4 0 _uhttps://www.taylorfrancis.com/books/9781351231794
_zClick here to view.
999 _c128131
_d128131