000 05694cam a2200649Ii 4500
001 9781315144009
003 FlBoTFG
005 20220509192932.0
006 m o d
007 cr cnu|||unuuu
008 190114s2019 flu ob 001 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781351387002
_q(electronic bk.)
020 _a1351387006
_q(electronic bk.)
020 _a9781315144009
_q(electronic bk.)
020 _a131514400X
_q(electronic bk.)
020 _a9781351386999
_q(electronic bk. : EPUB)
020 _a1351386999
_q(electronic bk. : EPUB)
020 _a9781351386982
_q(electronic bk. : Mobipocket)
020 _a1351386980
_q(electronic bk. : Mobipocket)
020 _z9781138500792
020 _z1138500798
024 7 _a10.1201/9781315144009
_2doi
035 _a(OCoLC)1082136127
_z(OCoLC)1082317751
035 _a(OCoLC-P)1082136127
050 4 _aQH447
072 7 _aSCI
_x007000
_2bisacsh
072 7 _aSCI
_x008000
_2bisacsh
072 7 _aSCI
_x010000
_2bisacsh
072 7 _aSCI
_x055000
_2bisacsh
072 7 _aPS
_2bicssc
082 0 4 _a572.8/6
_223
100 1 _aTiana, G.
_q(Guido),
_eauthor.
245 1 0 _aModeling the 3D conformation of genomes /
_cGuido Tiana, Luca Giorgetti.
264 1 _aBoca Raton :
_bCRC Press,
_c[2019]
264 4 _c©2019
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aSeries in computational biophysics ;
_v4
505 0 _aCover; Half Title; Series Page; Title Page; Copyright Page; Contents; Preface; Editor; Contributors; 1: Job Dekker; 1.1 Introduction; 1.2 Chromosome Conformation Capture; 1.3 3C Variants to Obtain Genome-Scale and High-Resolution Chromatin Interaction Matrices; 1.4 Insights Obtained From Chromosome Interaction Data; 1.5 Dynamics and Cell-to-Cell Variation in Chromatin Interactions; 1.6 Polymer Models for Chromosome Folding; 1.7 Mechanisms of Chromosome Folding and Nuclear Organization; 1.8 Future Perspective; Acknowledgments; Part 1: First-Principles Models; 2: Cédric Vaillant and Daniel Jost
505 8 _a2.1 Introduction2.2 3D Chromatin Organization and Epigenomics; 2.3 Epigenome-Driven Phase Separation of Chromatin; 2.3.1 Block copolymer model; 2.3.2 Simulation methods; 2.3.3 Phase diagram of the model: Towards (micro) phase separation; 2.3.4 Comparison to experiments; 2.3.5 A dynamical, out-of-equilibrium and stochastic organization; 2.3.6 Relation to other approaches; 2.4 Role of 3D Organization in Epigenome Stability; 2.4.1 The "Nano-Reactor" hypothesis; 2.4.2 Epigenomic 1D-3D positive feedback; 2.4.3 The living chromatin model; 2.4.4 Stability of one epigenomic domain
505 8 _a2.4.5 Stability of antagonistic epigenomic domains2.4.6 Towards a quantitative model; 2.5 Discussion and Perspectives; Acknowledgments; References; 3: Simona Bianco, Andrea M. Chiariello, Carlo Annunziatella, Andrea Esposito, Luca Fiorillo, AND Mario Nicodemi; 3.1 Introduction; 3.2. The Basic Features of the Strings AND Binders Switch (SBS) Model; 3.2.1 The strings and binders switch model; 3.2.2 The phase diagram of the SBS homopolymer; 3.2.3 A switch-like control of folding; 3.2.4 Critical exponents of the contact probability; 3.3. A Model of Chromatin Folding
505 8 _a3.3.1 The mixture model of chromatin3.3.2 Pattern formation (TADs) in the SBS block copolymer model; 3.4 The SBS Model of the Sox9 Locus in mESC; 3.4.1 Molecular nature of the binding domains; 3.5. Predicting the effects of mutations on genome 3D architecture; 3.6 Conclusions; Acknowledgments; References; 4: Leonid A. Mirny and Anton Goloborodko; 4.1 Introduction; 4.2 Physics of Loop Extrusion and Chromosome Organization; 4.2.1 Loop extrusion during mitosis; 4.2.2 Loop extrusion during interphase; 4.3 Elements of Polymer Simulations; Acknowledgments; References
505 8 _a5: C. A. Brackley, M. C. Pereira, J. Johnson, D. Michieletto, and D. Marenduzzo5.1 Hi-C Experiments: Compartments, Domains And Loops; 5.2 The Transcription Factor Model: The Bridging-Induced Attraction, Protein Clusters and Nuclear Bodies; 5.3 The Transcription Factor Model: The Bridging-Induced Attraction Drives Chromosome Conformation; 5.4 The Active and Diffusive Loop Extrusion Models; 5.5 Some Consequences of the TF and LE Models; Acknowledgments; 6: Fabrizio Benedetti, Dusan Racko, Julien Dorier, and Andrzej Stasiak; 6.1 Introduction
520 _aThis book provides a timely summary of physical modeling approaches applied to biological datasets that describe conformational properties of chromosomes in the cell nucleus. Chapters explain how to convert raw experimental data into 3D conformations, and how to use models to better understand biophysical mechanisms that control chromosome conformation. The coverage ranges from introductory chapters to modeling aspects related to polymer physics, and data-driven models for genomic domains, the entire human genome, epigenome folding, chromosome structure and dynamics, and predicting 3D genome structure.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aGenomes
_xData processing.
650 0 _aGenomics
_xTechnological innovations.
650 7 _aSCIENCE / Life Sciences / Biochemistry.
_2bisacsh
650 7 _aSCIENCE / Life Sciences / Biology / General
_2bisacsh
650 7 _aSCIENCE / Biotechnology
_2bisacsh
650 7 _aSCIENCE / Physics
_2bisacsh
700 1 _aGiorgetti, Luca,
_eauthor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781315144009
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c126852
_d126852