000 04486nam a22004815i 4500
001 978-90-481-8604-4
003 DE-He213
005 20140220084600.0
007 cr nn 008mamaa
008 100623s2010 ne | s |||| 0|eng d
020 _a9789048186044
_9978-90-481-8604-4
024 7 _a10.1007/978-90-481-8604-4
_2doi
050 4 _aTK7876-7876.42
072 7 _aTJFN
_2bicssc
072 7 _aTEC024000
_2bisacsh
072 7 _aTEC030000
_2bisacsh
082 0 4 _a621.3
_223
100 1 _aYoussef, Ahmed A.
_eauthor.
245 1 0 _aNanometer CMOS RFICs for Mobile TV Applications
_h[electronic resource] /
_cby Ahmed A. Youssef, James Haslett.
264 1 _aDordrecht :
_bSpringer Netherlands :
_bImprint: Springer,
_c2010.
300 _aXV, 200p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAnalog Circuits and Signal Processing
505 0 _aPreface. List of Symbols and Abbreviation -- One: Introduction and Overview. 1.1 Mobile TV Architectures. 1.2 DVB-H Mobile TV System Definitions. 1.3 Scope of This Book -- Two: Wideband CMOS LNA Design Techniques. 2.1 Dynamic Range Limits in MOSFETs. 2.2 Traditional CMOS LNA Topologies. 2.3 Recent Trends in Wideband CMOS LNAs. 2.4 Techniques to Improve the Wideband LNA Dynamic Range. 2.5 Chapter Summary -- Three: Nanometer CMOS LNAs for Mobile TV Receivers. 3.1 Requirements of the LNA in Mobile TV Receivers. 3.2 A 65 nm CMOS Wideband LNA Prototype. 3.3 Experimental Results. 3.4 Chapter Summary -- Four: RF Attenuator Linearization Circuits. 4.1 The Necessity of RF Automatic Gain Control. 4.2 RF Gain Control System Analysis. 4.3 Highly Linear RF Front-End Architectures. 4.4 Design of the Binary Weighted RF Attenuator. 4.5 Practical Considerations. 4.6 A 65 nm CMOS RF Passive Attenuator. 4.7 Chapter Summary -- Five: Wide Dynamic Range Mobile TV Front-End Architecture. 5.1 Mobile TV Front-End with Automatic Gain Control. 5.2 A 65 nm CMOS RF Front-End Prototype. 5.3 Chapter Summary -- Six: Summary and Conclusions. 6.1 Summary and Conclusions. 6.2 Further Research Areas -- References. Index. Author Biographies.
520 _aThe RF front-end is the most fundamental building block of any wireless system. Nanometer CMOS RFICs for Mobile TV Applications brings together what IC design engineers need to know for the development of low-cost, wide-dynamic range RF front-ends for today’s fastest growing communication markets. Drawing on their experience from both industry and academia, the authors use the emerging DVB-H mobile TV standard to provide readers with the step-by-step design progression of the described nanometer CMOS RFICs. Nanometer CMOS RFICs for Mobile TV Applications focuses on how to break the trade-off between power consumption and performance (linearity and noise figure) by optimizing the mobile TV front-end dynamic range in three hierarchical levels: the intrinsic MOSFET level, the circuit level, and the architectural level. It begins by discussing the fundamental concepts of MOSFET dynamic range, including nonlinearity and noise. It then moves to the circuit level introducing the challenges associated with designing wide-dynamic range, variable-gain, broadband low-noise amplifiers (LNAs). The book gives a detailed analysis of a new noise-canceling technique that helps CMOS LNAs achieve a sub - 2 dB wideband noise figure. Lastly, the book deals with the front-end dynamic range optimization process from the systems perspective by introducing the active and passive automatic gain control (AGC) mechanism. By describing in detail the physical realization of several 65 nm CMOS test chips, this book uncovers the practical challenges inherent in using nanometer CMOS technologies for RF circuit design and provides the solutions needed to overcome those challenges.
650 0 _aEngineering.
650 0 _aMicrowaves.
650 1 4 _aEngineering.
650 2 4 _aMicrowaves, RF and Optical Engineering.
650 2 4 _aSolid State Physics.
650 2 4 _aSpectroscopy and Microscopy.
700 1 _aHaslett, James.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9789048186037
830 0 _aAnalog Circuits and Signal Processing
856 4 0 _uhttp://dx.doi.org/10.1007/978-90-481-8604-4
912 _aZDB-2-ENG
999 _c113498
_d113498