000 03732nam a22005775i 4500
001 978-90-481-3243-0
003 DE-He213
005 20140220084557.0
007 cr nn 008mamaa
008 100301s2010 ne | s |||| 0|eng d
020 _a9789048132430
_9978-90-481-3243-0
024 7 _a10.1007/978-90-481-3243-0
_2doi
050 4 _aQD75.4.C45
072 7 _aPDE
_2bicssc
072 7 _aPN
_2bicssc
072 7 _aSCI013000
_2bisacsh
082 0 4 _a541.2
_223
100 1 _aBaronas, Romas.
_eauthor.
245 1 0 _aMathematical Modeling of Biosensors
_h[electronic resource] :
_bAn Introduction for Chemists and Mathematicians /
_cby Romas Baronas, Feliksas Ivanauskas, Juozas Kulys.
264 1 _aDordrecht :
_bSpringer Netherlands,
_c2010.
300 _aXIX, 334p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Series on Chemical Sensors and Biosensors, Methods and Applications,
_x1612-7617 ;
_v9
505 0 _aAnalytical Modeling of Biosensors -- Biosensor Action -- Modeling Biosensors at Steady State and Internal Diffusion Limitations -- Modeling Biosensors at Steady State and External Diffusion Limitations -- Modeling Biosensors Utilizing Microbial Cells -- Modeling Nonstationary State of Biosensors -- Numerical Modeling of Biosensors -- Mono-Layer Mono-Enzyme Models of Biosensors -- One-Layer Multi-Enzyme Models of Biosensors -- Multi-Layer Models of Biosensors -- Modeling Biosensors of Complex Geometry -- Numerical Methods for Reaction-Diffusion Equations -- The Difference Schemes for the Diffusion Equation -- The Difference Schemes for the Reaction–Diffusion Equations.
520 _aThis book presents biosensor development and modeling from both a chemical and a mathematical point of view. It contains unique modeling methods for catalytical (amperometric, potentiometer and optical) biosensors. It examines processes that occur in the sensors' layers and at their interface, and it provides analytical and numerical methods to solve enzymatic kinetic and diffusion equations. The action of single enzyme as well as polyenzyme biosensors is studied, and the modeling of biosensors that contain perforated membranes and multipart mass transport profiles is critically investigated. Furthermore, it is fully described how signals can be biochemically amplified, how cascades of enzymatic substrate conversion are triggered, and how signals are processed via a chemometric approach and artificial neuronal networks. The results of digital modeling are compared with both proximal analytical solutions and experimental data.
650 0 _aChemistry.
650 0 _aBiochemical engineering.
650 0 _aChemistry
_xMathematics.
650 0 _aComputer simulation.
650 0 _aComputer science
_xMathematics.
650 0 _aMathematical physics.
650 1 4 _aChemistry.
650 2 4 _aMath. Applications in Chemistry.
650 2 4 _aComputational Mathematics and Numerical Analysis.
650 2 4 _aComputer Applications in Chemistry.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aBiochemical Engineering.
650 2 4 _aSimulation and Modeling.
700 1 _aIvanauskas, Feliksas.
_eauthor.
700 1 _aKulys, Juozas.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9789048132423
830 0 _aSpringer Series on Chemical Sensors and Biosensors, Methods and Applications,
_x1612-7617 ;
_v9
856 4 0 _uhttp://dx.doi.org/10.1007/978-90-481-3243-0
912 _aZDB-2-CMS
999 _c113299
_d113299