000 02283nam a22003975i 4500
001 978-3-8348-9778-7
003 DE-He213
005 20140220084553.0
007 cr nn 008mamaa
008 101031s2010 gw | s |||| 0|eng d
020 _a9783834897787
_9978-3-8348-9778-7
024 7 _a10.1007/978-3-8348-9778-7
_2doi
050 4 _aQA1-939
072 7 _aPB
_2bicssc
072 7 _aMAT000000
_2bisacsh
082 0 4 _a510
_223
100 1 _aShimizu, Kenichi.
_eauthor.
245 1 0 _aBootstrapping Stationary ARMA-GARCH Models
_h[electronic resource] /
_cby Kenichi Shimizu.
264 1 _aWiesbaden :
_bVieweg+Teubner,
_c2010.
300 _a148 p. 12 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aBootstrap Does not Always Work -- Parametric AR(p)-ARCH(q) Models -- Parametric ARMA(p, q)- GARCH(r, s) Models -- Semiparametric AR(p)-ARCH(1) Models.
520 _aBootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to take too much risk. Kenichi Shimizu investigates the limit of the two standard bootstrap techniques, the residual and the wild bootstrap, when these are applied to the conditionally heteroscedastic models, such as the ARCH and GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle’s ARCH or Bollerslev’s GARCH models while the residual bootstrap works without problems. Simulation studies from the application of the proposed bootstrap methods are demonstrated together with the theoretical investigation.
650 0 _aMathematics.
650 1 4 _aMathematics.
650 2 4 _aMathematics, general.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783834809926
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-8348-9778-7
912 _aZDB-2-SMA
999 _c113032
_d113032