000 03401nam a22004935i 4500
001 978-3-642-13950-5
003 DE-He213
005 20140220084540.0
007 cr nn 008mamaa
008 100710s2010 gw | s |||| 0|eng d
020 _a9783642139505
_9978-3-642-13950-5
024 7 _a10.1007/978-3-642-13950-5
_2doi
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
082 0 4 _a006.3
_223
100 1 _aBrabazon, Anthony.
_eeditor.
245 1 0 _aNatural Computing in Computational Finance
_h[electronic resource] /
_cedited by Anthony Brabazon, Michael O’Neill, Dietmar G. Maringer.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _a241p. 19 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aStudies in Computational Intelligence,
_x1860-949X ;
_v293
505 0 _aNatural Computing in Computational Finance (Volume 3): Introduction -- Natural Computing in Computational Finance (Volume 3): Introduction -- I: Financial and Agent-Based Models -- Robust Regression with Optimisation Heuristics -- Evolutionary Estimation of a Coupled Markov Chain Credit Risk Model -- Evolutionary Computation and Trade Execution -- Agent-Based Co-operative Co-evolutionary Algorithms for Multi-objective Portfolio Optimization -- Inferring Trader’s Behavior from Prices -- II: Dynamic Strategies and Algorithmic Trading -- Index Mutual Fund Replication -- Frequent Knowledge Patterns in Evolutionary Decision Support Systems for Financial Time Series Analysis -- Modeling Turning Points in Financial Markets with Soft Computing Techniques -- Evolutionary Money Management -- Interday and Intraday Stock Trading Using Probabilistic Adaptive Mapping Developmental Genetic Programming and Linear Genetic Programming.
520 _aThis book consists of eleven chapters each of which was selected following a rigorous, peer-reviewed, selection process. The chapters illustrate the application of a range of cutting-edge natural computing and agent-basedmethodologies in computational finance and economics. While describing cutting edge applications, the chapters are written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics. The inspiration for this book was due in part to the success of EvoFIN 2009, the 3rd European Workshop on Evolutionary Computation in Finance and Economics. This book follows on from Natural Computing in Computational Finance Volumes I and II.
650 0 _aEngineering.
650 0 _aArtificial intelligence.
650 0 _aEconomics.
650 1 4 _aEngineering.
650 2 4 _aComputational Intelligence.
650 2 4 _aArtificial Intelligence (incl. Robotics).
650 2 4 _aEconomics general.
700 1 _aO’Neill, Michael.
_eeditor.
700 1 _aMaringer, Dietmar G.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642139499
830 0 _aStudies in Computational Intelligence,
_x1860-949X ;
_v293
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-13950-5
912 _aZDB-2-ENG
999 _c112373
_d112373