000 03850nam a22006135i 4500
001 978-3-642-12519-5
003 DE-He213
005 20140220084535.0
007 cr nn 008mamaa
008 100407s2010 gw | s |||| 0|eng d
020 _a9783642125195
_9978-3-642-12519-5
024 7 _a10.1007/978-3-642-12519-5
_2doi
050 4 _aQA75.5-76.95
072 7 _aUNH
_2bicssc
072 7 _aUND
_2bicssc
072 7 _aCOM030000
_2bisacsh
082 0 4 _a025.04
_223
100 1 _aGaber, Mohamed Medhat.
_eeditor.
245 1 0 _aKnowledge Discovery from Sensor Data
_h[electronic resource] :
_bSecond International Workshop, Sensor-KDD 2008, Las Vegas, NV, USA, August 24-27, 2008, Revised Selected Papers /
_cedited by Mohamed Medhat Gaber, Ranga Raju Vatsavai, Olufemi A. Omitaomu, João Gama, Nitesh V. Chawla, Auroop R. Ganguly.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aIX, 227p. 110 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v5840
505 0 _aData Mining for Diagnostic Debugging in Sensor Networks: Preliminary Evidence and Lessons Learned -- Monitoring Incremental Histogram Distribution for Change Detection in Data Streams -- Situation-Aware Adaptive Visualization for Sensory Data Stream Mining -- Unsupervised Plan Detection with Factor Graphs -- WiFi Miner: An Online Apriori-Infrequent Based Wireless Intrusion System -- Probabilistic Analysis of a Large-Scale Urban Traffic Sensor Data Set -- Spatio-temporal Outlier Detection in Precipitation Data -- Large-Scale Inference of Network-Service Disruption upon Natural Disasters -- An Adaptive Sensor Mining Framework for Pervasive Computing Applications -- A Simple Dense Pixel Visualization for Mobile Sensor Data Mining -- Incremental Anomaly Detection Approach for Characterizing Unusual Profiles -- Spatiotemporal Neighborhood Discovery for Sensor Data.
520 _aThis book contains thoroughly refereed extended papers from the Second International Workshop on Knowledge Discovery from Sensor Data, Sensor-KDD 2008, held in Las Vegas, NV, USA, in August 2008. The 12 revised papers presented together with an invited paper were carefully reviewed and selected from numerous submissions. The papers feature important aspects of knowledge discovery from sensor data, e.g., data mining for diagnostic debugging; incremental histogram distribution for change detection; situation-aware adaptive visualization; WiFi mining; mobile sensor data mining; incremental anomaly detection; and spatiotemporal neighborhood discovery for sensor data.
650 0 _aComputer science.
650 0 _aComputer Communication Networks.
650 0 _aDatabase management.
650 0 _aData mining.
650 0 _aInformation storage and retrieval systems.
650 0 _aOptical pattern recognition.
650 1 4 _aComputer Science.
650 2 4 _aInformation Storage and Retrieval.
650 2 4 _aComputer Communication Networks.
650 2 4 _aDatabase Management.
650 2 4 _aData Mining and Knowledge Discovery.
650 2 4 _aPattern Recognition.
700 1 _aVatsavai, Ranga Raju.
_eeditor.
700 1 _aOmitaomu, Olufemi A.
_eeditor.
700 1 _aGama, João.
_eeditor.
700 1 _aChawla, Nitesh V.
_eeditor.
700 1 _aGanguly, Auroop R.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642125188
830 0 _aLecture Notes in Computer Science,
_x0302-9743 ;
_v5840
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-12519-5
912 _aZDB-2-SCS
912 _aZDB-2-LNC
999 _c112092
_d112092