000 02516nam a22004575i 4500
001 978-3-642-11490-8
003 DE-He213
005 20140220084530.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 _a9783642114908
_9978-3-642-11490-8
024 7 _a10.1007/978-3-642-11490-8
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
082 0 4 _a515
_223
100 1 _aHackbusch, Wolfgang.
245 1 0 _aElliptic Differential Equations
_h[electronic resource] :
_bTheory and Numerical Treatment /
_cby Wolfgang Hackbusch.
260 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aXIV, 311p. 40 illus.
_bdigital.
490 0 _aSpringer Series in Computational Mathematics,
_x0179-3632 ;
_v18
520 _aThe book offers a simultaneous presentation of the theory and of the numerical treatment of elliptic problems. The author starts with a discussion of the Laplace equation in the classical formulation and its discretisation by finite differences and deals with topics of gradually increasing complexity in the following chapters. He introduces the variational formulation of boundary value problems together with the necessary background from functional analysis and describes the finite element method including the most important error estimates. A more advanced chapter leads the reader into the theory of regularity. The reader will also find more details about the discretisation of singularly perturbed equations and eigenvalue problems. The author discusses the Stokes problem as an example of a saddle point problem taking into account its relevance to applications in fluid dynamics.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aSystems theory.
650 0 _aNumerical analysis.
650 0 _aMathematical optimization.
650 1 4 _aMathematics.
650 2 4 _aAnalysis.
650 2 4 _aNumerical Analysis.
650 2 4 _aSystems Theory, Control.
650 2 4 _aCalculus of Variations and Optimal Control; Optimization.
650 2 4 _aTheoretical, Mathematical and Computational Physics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642052446
830 0 _aSpringer Series in Computational Mathematics,
_x0179-3632 ;
_v18
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-11490-8
912 _aZDB-2-SMA
999 _c111860
_d111860