000 03642nam a22005175i 4500
001 978-3-642-03434-3
003 DE-He213
005 20140220084525.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 _a9783642034343
_9978-3-642-03434-3
024 7 _a10.1007/978-3-642-03434-3
_2doi
050 4 _aQC120-168.85
050 4 _aQA808.2
072 7 _aPHD
_2bicssc
072 7 _aSCI041000
_2bisacsh
082 0 4 _a531
_223
100 1 _aGreiner, Walter.
_eauthor.
245 1 0 _aClassical Mechanics
_h[electronic resource] :
_bSystems of Particles and Hamiltonian Dynamics /
_cby Walter Greiner.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aXVIII, 579p. 280 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aNewtonian Mechanics in Moving Coordinate Systems -- Newton’s Equations in a Rotating Coordinate System -- Free Fall on the Rotating Earth -- Foucault’s Pendulum -- Mechanics of Particle Systems -- Degrees of Freedom -- Center of Gravity -- Mechanical Fundamental Quantities of Systems of Mass Points -- Vibrating Systems -- Vibrations of Coupled Mass Points -- The Vibrating String -- Fourier Series -- The Vibrating Membrane -- Mechanics of Rigid Bodies -- Rotation About a Fixed Axis -- Rotation About a Point -- Theory of the Top -- Lagrange Equations -- Generalized Coordinates -- D’Alembert Principle and Derivation of the Lagrange Equations -- Lagrange Equation for Nonholonomic Constraints -- Special Problems -- Hamiltonian Theory -- Hamilton’s Equations -- Canonical Transformations -- Hamilton–Jacobi Theory -- Extended Hamilton–Lagrange Formalism -- Extended Hamilton–Jacobi Equation -- Nonlinear Dynamics -- Dynamical Systems -- Stability of Time-Dependent Paths -- Bifurcations -- Lyapunov Exponents and Chaos -- Systems with Chaotic Dynamics -- On the History of Mechanics -- Emergence of Occidental Physics in the Seventeenth Century.
520 _aThis textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.
650 0 _aPhysics.
650 0 _aDifferentiable dynamical systems.
650 0 _aMathematics.
650 0 _aMathematical physics.
650 0 _aMechanics.
650 0 _aMechanics, applied.
650 1 4 _aPhysics.
650 2 4 _aMechanics.
650 2 4 _aTheoretical and Applied Mechanics.
650 2 4 _aApplications of Mathematics.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aDynamical Systems and Ergodic Theory.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642034336
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-03434-3
912 _aZDB-2-PHA
999 _c111499
_d111499