000 03436nam a22004575i 4500
001 978-3-642-03305-6
003 DE-He213
005 20140220084525.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 _a9783642033056
_9978-3-642-03305-6
024 7 _a10.1007/978-3-642-03305-6
_2doi
050 4 _aQC5.53
072 7 _aPHU
_2bicssc
072 7 _aSCI040000
_2bisacsh
082 0 4 _a530.15
_223
100 1 _aGrabe, Michael.
_eauthor.
245 1 0 _aGeneralized Gaussian Error Calculus
_h[electronic resource] /
_cby Michael Grabe.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aXIII, 301p. 100 illus., 50 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aBasics of Metrology -- True Values and Traceability -- Models and Approaches -- Generalized Gaussian Error Calculus -- The New Uncertainties -- Treatment of Random Errors -- Treatment of Systematic Errors -- Error Propagation -- Means and Means of Means -- Functions of Erroneous Variables -- Method of Least Squares -- Essence of Metrology -- Dissemination of Units -- Multiples and Sub-multiples -- Founding Pillars -- Fitting of Straight Lines -- Preliminaries -- Straight Lines: Case (i) -- Straight Lines: Case (ii) -- Straight Lines: Case (iii) -- Fitting of Planes -- Preliminaries -- Planes: Case (i) -- Planes: Case (ii) -- Planes: Case (iii) -- Fitting of Parabolas -- Preliminaries -- Parabolas: Case (i) -- Parabolas: Case (ii) -- Parabolas: Case (iii) -- Non-Linear Fitting -- Series Truncation -- Transformation.
520 _aFor the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence interval as put down by Student, and a contribution due to unknown systematic errors, as expressed by an appropriate worst case estimation.
650 0 _aPhysics.
650 0 _aSystems theory.
650 0 _aMathematical physics.
650 0 _aEngineering.
650 1 4 _aPhysics.
650 2 4 _aMathematical Methods in Physics.
650 2 4 _aSystems Theory, Control.
650 2 4 _aEngineering, general.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642033049
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-03305-6
912 _aZDB-2-PHA
999 _c111486
_d111486