000 03123nam a22005295i 4500
001 978-3-642-01777-3
003 DE-He213
005 20140220084523.0
007 cr nn 008mamaa
008 110719s2010 gw | s |||| 0|eng d
020 _a9783642017773
_9978-3-642-01777-3
024 7 _a10.1007/978-3-642-01777-3
_2doi
050 4 _aQA71-90
072 7 _aPBKS
_2bicssc
072 7 _aMAT006000
_2bisacsh
082 0 4 _a518
_223
082 0 4 _a518
_223
100 1 _aFeng, Kang.
_eauthor.
245 1 0 _aSymplectic Geometric Algorithms for Hamiltonian Systems
_h[electronic resource] /
_cby Kang Feng, Mengzhao Qin.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2010.
300 _aXXIII, 676 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreliminaries of Differentiable Manifolds -- Symplectic Algebra and Geometry Preliminaries -- Hamiltonian Mechanics and Symplectic Geometry -- Symplectic Difference Schemes for Hamiltonian Systems -- The Generating Function Method -- The Calculus of Generating Functions and Formal Energy -- Symplectic Runge-Kutta Methods -- Composition Scheme -- Formal Power Series and B-Series -- Volume-Preserving Methods for Source-Free Systems -- Contact Algorithms for Contact Dynamical Systems -- Poisson Bracket and Lie-Poisson Schemes -- KAM Theorem of Symplectic Algorithms -- Lee-Variational Integrator -- Structure Preserving Schemes for Birkhoff Systems -- Multisymplectic and Variational Integrators.
520 _a"Symplectic Geometric Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.
650 0 _aMathematics.
650 0 _aComputer science
_xMathematics.
650 0 _aGeometry.
650 0 _aAlgebraic topology.
650 0 _aQuantum theory.
650 0 _aHydraulic engineering.
650 1 4 _aMathematics.
650 2 4 _aComputational Mathematics and Numerical Analysis.
650 2 4 _aGeometry.
650 2 4 _aAlgebraic Topology.
650 2 4 _aQuantum Physics.
650 2 4 _aEngineering Fluid Dynamics.
700 1 _aQin, Mengzhao.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642017766
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-01777-3
912 _aZDB-2-SMA
999 _c111371
_d111371