000 02964nam a22005295i 4500
001 978-3-642-01287-7
003 DE-He213
005 20140220084522.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 _a9783642012877
_9978-3-642-01287-7
024 7 _a10.1007/978-3-642-01287-7
_2doi
050 4 _aQA370-380
072 7 _aPBKJ
_2bicssc
072 7 _aMAT007000
_2bisacsh
082 0 4 _a515.353
_223
100 1 _aSeiler, Werner M.
_eauthor.
245 1 0 _aInvolution
_h[electronic resource] :
_bThe Formal Theory of Differential Equations and its Applications in Computer Algebra /
_cby Werner M. Seiler.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aXXII, 650 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAlgorithms and Computation in Mathematics,
_x1431-1550 ;
_v24
505 0 _aFormal Geometry of Differential Equations -- Involution I: Algebraic Theory -- Completion to Involution -- Structure Analysis of Polynomial Modules -- Involution II: Homological Theory -- Involution III: Differential Theory -- The Size of the Formal Solution Space -- Existence and Uniqueness of Solutions -- Linear Differential Equations -- Miscellaneous -- Algebra -- Differential Geometry.
520 _aThe book provides a self-contained account of the formal theory of general, i.e. also under- and overdetermined, systems of differential equations which in its central notion of involution combines geometric, algebraic, homological and combinatorial ideas. It presents for the first time in book form the theory of Pommaret bases, a special kind of Gröbner bases closely related to Koszul homology, and contains an extensive discussion of the existence and uniqueness of solutions of formally well-posed initial value problems and a novel presentation of Vessiot's dual version of the Cartan-Kähler theory. Special emphasis is put on a constructive approach leading to effective algorithms.
650 0 _aMathematics.
650 0 _aAlgebra
_xData processing.
650 0 _aAlgebra.
650 0 _aDifferential Equations.
650 0 _aDifferential equations, partial.
650 1 4 _aMathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aOrdinary Differential Equations.
650 2 4 _aCommutative Rings and Algebras.
650 2 4 _aAlgebra.
650 2 4 _aTheoretical, Mathematical and Computational Physics.
650 2 4 _aSymbolic and Algebraic Manipulation.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642012860
830 0 _aAlgorithms and Computation in Mathematics,
_x1431-1550 ;
_v24
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-01287-7
912 _aZDB-2-SMA
999 _c111350
_d111350