000 03283nam a22005175i 4500
001 978-3-211-99314-9
003 DE-He213
005 20140220084518.0
007 cr nn 008mamaa
008 100301s2010 au | s |||| 0|eng d
020 _a9783211993149
_9978-3-211-99314-9
024 7 _a10.1007/978-3-211-99314-9
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aRobbiano, Lorenzo.
_eeditor.
245 1 0 _aApproximate Commutative Algebra
_h[electronic resource] /
_cedited by Lorenzo Robbiano, John Abbott.
264 1 _aVienna :
_bSpringer Vienna,
_c2010.
300 _aXIV, 227p. 15 illus., 4 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTexts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,
_x0943-853X
505 0 _aFrom Oil Fields to Hilbert Schemes -- Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials -- Towards Geometric Completion of Differential Systems by Points -- Geometric Involutive Bases and Applications to Approximate Commutative Algebra -- Regularization and Matrix Computation in Numerical Polynomial Algebra -- Ideal Interpolation: Translations to and from Algebraic Geometry -- An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint -- ApCoA = Embedding Commutative Algebra into Analysis -- Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares.
520 _aApproximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.
650 0 _aMathematics.
650 0 _aAlgebra
_xData processing.
650 0 _aGeometry, algebraic.
650 0 _aAlgebra.
650 0 _aNumerical analysis.
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aCommutative Rings and Algebras.
650 2 4 _aNumerical Analysis.
650 2 4 _aSymbolic and Algebraic Manipulation.
700 1 _aAbbott, John.
_eeditor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783211993132
830 0 _aTexts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,
_x0943-853X
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-211-99314-9
912 _aZDB-2-SMA
999 _c111136
_d111136